
SERIES OF LECTURES
CHARACTERS, MAPS, FREE CUMULANTS.

EXERCISES

PIOTR ŚNIADY

List of high priority problems:

• Problem 4.1,
• Problems 4.2 and 4.3,
• Problem 5.8,
• Problems 5.1–5.3,
• Problem 2.1,
• Problem 7.1,
• Problem 3.1.

1. Something concrete

There are three irreducible representations of S(3):

• the trivial representation. It is a representation on a one-dimen-
sional space R in which each permutation is mapped to [1] (it
is a 1 × 1 matrix, not a very challenging object). This repre-
sentation corresponds to the Young diagram (3) which consists
of one row with three boxes.
• the alternating representation. It is a representation on a one-

dimensional space R in which any permutation π is mapped to
[(−1)π] its sign. This representation corresponds to the Young
diagram (1, 1, 1) which consists of one column with three boxes.
• the fundamental representation. It is a representation on the

plane R in which permutations from S(3) are viewed as per-
mutations of the vertices of an equilateral triangle (the center
of the mass in the origin of the coordinate system) and to each
permutation we associate the corresponding linear transforma-
tion (see Lecture 1). This representation corresponds to the
Young diagram (2, 1) which looks like a 2 × 2 square with one
box removed.

Problem 1.1. For each of these Young diagrams λ calculate the cor-
responding normalized characters Chπ(λ) over all choices of π. If you
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have too much time, compare these results to the outcome of Stanley
character formula.

Problem 1.2. (time consuming, we will not solve it during the exercise
session) How to construct an irreducible 6-dimensional representation
of S(5) based on the irreducible 3-dimensioinal representation of the al-
ternating group A(5) presented on the lecture (five cubes inscribed into
a dodecahedron)? What you constructed is called induced representa-
tion; it happens to correspond to the Young diagram (3, 1, 1). Calculate
directly its characters.

2. Characters

For a partition π of k and a Young diagram λ with n boxes the
corresponding normalized character is defined as

Chπ(λ) =


n(n− 1) · · · (n− k + 1)︸ ︷︷ ︸

k factors

Tr ρλ(π,1,1,...,1)

dimension of ρλ
if n ≥ k,

0 if n < k.

Problem 2.1. Calculate Ch1(λ) and Ch1,1(λ).
What is the relationship between Chπ(λ) and Chπ,1(λ)?

3. Maps

Problem 3.1. Let an oriented map with labeled edges be given. We
denote by σ1 (resp. σ2) the permutation which describes the cyclic struc-
ture of the white (resp. black) vertices (going counterclockwise). Prove
that the permutation σ1σ2 gives the structure of the faces of the map.
Concrete, simplified version: show that the number of cycles of σ1σ2

is equal to the number of the faces and that the lengths of the cycles
correspond (how?) to the sizes (what does it mean?) of the faces. More
sophisticated version: if we go along the boundary of a face, touching it
with the left hand and read the label of the every send edge which we tra-
verse (hint: read only the labels which we enter at the white endpoint),
obtain the cycle structure of the permutation σ1σ2.

4. Embeddings

4.1. Liberal embeddings. Embdeddings can be defined in three equiv-
alent ways, see below.

Viewpoint 1. Suppose that permutations σ1, σ2 ∈ S(k) and a Young
diagram λ are given. A (liberal) embedding of (σ1, σ2) to λ is a function
f which maps [k] = {1, . . . , k} to the set of boxes of λ and such that:
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• for all a, b ∈ [k] if a, b belong to the same cycle of σ1 then boxes
f(a), f(b) belong to the same column of λ;
• for all a, b ∈ [k] if a, b belong to the same cycle of σ2 then boxes
f(a), f(b) belong to the same row of λ.

Viewpoint 2. Alternatively, an embedding is a pair (f1, f2) such that:

• f1 : C(σ1)→ N is a function which maps the set of cycles of σ1

to the set of columns of λ;
• f2 : C(σ2)→ N is a function which maps the set of cycles of σ2

to the set of rows of λ;
• for each pair of cycles c1 ∈ C(σ1) and c2 ∈ C(σ2) which are not

disjoint c1∩c2 6= ∅ we have that
(
f1(c1), f2(c2)

)
∈ λ, i.e. the box

in the intersection of column f1(c1) and row f2(c2) lies within
the Young diagram λ.

Viewpoint 3. For a given map M , an embedding of M is a func-
tion which maps: white vertices to columns of the Young diagram λ,
black vertices to rows of the Young diagram, and edges to the boxes of
the Young diagram, and which preserves the notion of the incidence,
i.e. white (resp. black) vertex and an incident edge are mapped to some
column c (resp. row r) and a box which belongs to c (resp. r).

Problem 4.1. Make sure that the above three viewpoints are equivalent.

We define the normalized number of embeddings as

Nσ1,σ2(λ) = (−1)|C(σ2)| (the number of embeddings of (σ2, σ2) to λ).

Problem 4.2. Evaluate Nσ1,σ2(λ) when k = 2, permutations σ1, σ2 are
fixed (there are only 4 possible choices), and λ is arbitrary.

Problem 4.3. Evaluate Nσ1,σ2(λ) when k = 3, and

(a) σ1 = (1)(2)(3) is the identity and σ2 = (1, 2, 3) is the full cycle,
(b) σ1 = (1, 2)(3), σ2 = (1)(2, 3) are transpositions.

5. Liberal Stanley formula

The usual (liberal) version of Stanley formula says that for a permu-
tation π ∈ S(k)

Chπ(λ) = (−1)|C(π)|
∑

σ1,σ2∈S(k),
σ1σ2=π

Nσ1,σ2(λ).

Problem 5.1. Use the liberal version of Stanley formula in order to
calculate Ch2.
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Problem 5.2. Use the liberal version of Stanley formula in order to
calculate Ch3.

Problem 5.3. Use the liberal version of Stanley formula in order to
calculate Ch2,1. What is relationship between Ch2 and Ch2,1?

5.1. Injective embeddings. An embedding is called injective if the
corresponding function f : [k]→ λ is an injection. The quantity Ninjective

σ1,σ2
(λ)

is defined analogously to Nσ1,σ2(λ), but we count only the number of
injective embeddings.

Problem 5.4. Solve injective versions of Problems 4.2 and 4.3, i.e. cal-
culate Ninjective

σ1,σ2
(λ).

5.2. Injective versus liberal. The usual (liberal) version of Stanley
formula says that for a permutation π ∈ S(k)

Chπ(λ) = (−1)|C(π)|
∑

σ1,σ2∈S(k),
σ1σ2=π

Nσ1,σ2(λ).

Its injective version says that

Chπ(λ) = (−1)|C(π)|
∑

σ1,σ2∈S(k),
σ1σ2=π

Ninjective
σ1,σ2

(λ).

Problem 5.5. Use the liberal and the injective version of Stanley for-
mula in order to calculate Ch2. Make sure that they give the same
answer.

Problem 5.6. Use the liberal and the injective version of Stanley for-
mula in order to calculate Ch3. Make sure that they give the same
answer.

Problem 5.7. Use the liberal and the injective version of Stanley for-
mula in order to calculate Ch2,1. Make sure that they give the same
answer. What is relationship between Ch2 and Ch2,1?

5.3. Rectangular Young diagrams. if p < 0 and q > 0 are integers,
we denote by (−p)× q = (q, . . . , q)︸ ︷︷ ︸

(−p) times

a rectangular Young diagram with

−p rows and q columns.

Problem 5.8. Use the liberal version of Stanley formula to show that

(−1)|`(π)|Chπ
(
(−p)× q)

is a polynomial in p and q and all of its coefficients are non-negative
integers. What is the combinatorial interpretation for the coefficient[

paqb
]

(−1)|`(π)|Chπ
(
(−p)× q)
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standing at the monomial paqb?

Problem 5.9. Try to solve the previous problem using the injective
version of Stanley formula. Hint: it is really painful. You should not
do it.

5.4. Small pieces of the proof.

Problem 5.10. Assume that one of the faces of a map M is 2-gon
(a polygon which consists of two edges) and this face does not form a
connected component. Prove that there are no injective embeddings of
this map. Reformulate this result in such a way that the map M is
replaced by a pair of permutations.

Problem 5.11. Assume that a map M ′ is given. Let M be a map
obtained from M ′ by adding an additional connected component which
consists of two vertices connected by a single edge. What is the rela-
tionship between NM ′(λ) and NM(λ)?

6. Murnaghan–Nakayama rule

Bonus material. We will not do it during the exercise session.

Problem 6.1. Check the details in the formulation of Murnaghan–
Nakayama rule. Use it to calculate the characters which we already
calculated in Problem 1.1.

Problem 6.2. Use Murnaghan–Nakayama rule in order to calculate
the character Ch2(λ) on the transposition. Try to estimate the compu-
tational complexity. Pro tip: hook-length formula speeds up computa-
tions.

7. Normalized conjugacy classes

Normalized conjugacy clases are defined as follows:

A1 =
∑
a∈[k]

(a),

A2 =
∑
a,b∈[k],
a6=b

(a, b),

A3 =
∑

a,b,c∈[k],
a,b,call different

(a, b, c),

A2,1 =
∑

a,b,c∈[k],
a,b,call different

(a, b)(c).
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Definition of Aπ for an arbitrary partition π is analogous. For simplic-
ity we consider each normalized conjugacy class as the element of the
symmetric group algebra C[S(k)] but for best resuts one should rather
use partial permutations of Ivanov and Kerov (and an inverse limit of
those for k →∞).

Problem 7.1. Express:

(a) A2 · A2,
(b) A2 · A1,
(c) A1 · A1

as a linear combination of normalized conjugacy classes (Aπ).

8. Jucys–Murphy elements

Biane’s matrix is defined as

Xn+1 =


0 ρλ(1, 2) · · · ρλ(1, n) 1

ρλ(2, 1) 0 · · · ρλ(2, n) 1
...

...
. . .

...
...

ρλ(n, 1) ρλ(n, 2) · · · 0 1
1 1 · · · 1 0


Problem 8.1. Calculate tr [(Xn+1)2] and tr [(Xn+1)3].
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