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insertion tableau P(w)

16 37 41 82

23 53 70

74 99

recording tableau Q(w)

1 2 3 5

4 6 7

8 9

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 18)
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legal PDF file available 
on author’s website
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Further 
reading


Robinson-Schensted-Knuth algorithm

Start with two empty tableaux. Read letters of the word one after another. With each letter proceed as follows:


1. start with the bottom row of the insertion tableau P,

2. insert the letter to the leftmost box in this row which contains a number which is bigger than the one which you want to insert,

3. if you had to bump some letter, this bumped letter must be inserted in to the next row according to the rule number 2,

4. if you inserted a letter to an empty box in the insertion tableau P, make a mark about the position of this box in the recording tableau Q 

and proceed to the next letter of the word.


did you print the handout?
−→ psniady.impan.pl/surprising

http://psniady.impan.pl/surprising
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Longest Increasing Subsequence
23, 53, 74, 16, 99, 70, 82, 37, 41

what is the length of the longest increasing subsequence?

LIS(23, 53, 74, 16, 99, 70, 82, 37, 41) = 4

Stanisław Ulam:
let πn be a uniformly random
permutation of the letters
1, 2, . . . , n

what can you say about
the random variable
LISn = LIS(πn)
in the limit n→∞? 180 185 190 195 200 205

n = 104
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Robinson–Schensted–Knuth algorithm is a bijection. . .

input:
sequence w = (w1, . . . ,wn)

output:
semistandard tableau P ,
standard tableau Q,

P and Q have the same shape
with n boxes

example:
w = (23, 53, 74, 16, 99, 70, 82, 37, 41)

16 37 41 82

23 53 70

74 99

1 2 3 5

4 6 7

8 9

insertion tableau P(w) recording tableau Q(w)
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Robinson–Schensted–Knuth algorith — the induction step

16 37 41 82

23 53 70

74 99

1 2 3 5

4 6 7

8 9

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41)
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insertion tableau P(w) recording tableau Q(w)
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8 9

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 18)
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Robinson–Schensted–Knuth algorith — the induction step
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new box

10

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 18)
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Robinson–Schensted–Knuth algorith — the induction step

16 18 41 82

23 37 70

53 99

74

1 2 3 5

4 6 7

8 9

10

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 18)
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Robinson–Schensted–Knuth algorithm

insertion tableau P(w) recording tableau Q(w)

w = ∅
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Robinson–Schensted–Knuth algorithm

23 1

insertion tableau P(w) recording tableau Q(w)

w = (23)
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Robinson–Schensted–Knuth algorithm

23 53 1 2

insertion tableau P(w) recording tableau Q(w)

w = (23, 53)
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Robinson–Schensted–Knuth algorithm

23 53 74 1 2 3

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74)
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Robinson–Schensted–Knuth algorithm

53 7416

23

1 2 3

4

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16)
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Robinson–Schensted–Knuth algorithm

16 53 74

23

99 1 2 3 5

4

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99)
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Robinson–Schensted–Knuth algorithm

16 53 99

23

70

74

1 2 3 5

4 6

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70)
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Robinson–Schensted–Knuth algorithm

16 53 70

23 74

82

99

1 2 3 5

4 6 7

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82)
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Robinson–Schensted–Knuth algorithm

16 70 82

23 99

37

53

74

1 2 3 5

4 6 7

8

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37)
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Robinson–Schensted–Knuth algorithm

16 37 82

23 53

74

41

70

99

1 2 3 5

4 6 7

8 9

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41)
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Robinson–Schensted–Knuth algorithm

16 41 82

23 70

99

34

37

53

74

1 2 3 5

4 6 7

8 9

10

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34)
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Robinson–Schensted–Knuth algorithm

16 34 41

23 37 70

53 99

74

73

82

1 2 3 5

4 6 7 11

8 9

10

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73)
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Robinson–Schensted–Knuth algorithm

34 41 73

37 70 82

99

2

16

23

53

74

1 2 3 5

4 6 7 11

8 9

10

12

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73, 2)
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Robinson–Schensted–Knuth algorithm

2 41 73

16 70 82

23

53

74

24

34

37

99

1 2 3 5

4 6 7 11

8 9

10 13

12

insertion tableau P(w) recording tableau Q(w)

w = (23, 53, 74, 16, 99, 70, 82, 37, 41, 34, 73, 2, 24)
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length of the first row
=

length of the longest
increasing subsequence

length of the first column
=

length of the longest
decreasing subsequence

for which funny question
concerning increasing subsequences
the answer is:

“the total length of the first two rows” ?
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Robinson–Schensted–Knuth algorithm is a bijection. . .

input:
sequence
w = (w1, . . . ,wn)

output:
semistandard tableau P ,
standard tableau Q,

P and Q have the same shape
with n boxes

example:
w = (23, 53, 74, 16, 99, 70, 82, 37, 41)

16 37 41 82

23 53 70

74 99

1 2 3 5

4 6 7

8 9

insertion tableau P(w) recording tableau Q(w)
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Robinson–Schensted–Knuth algorithm is a bijection. . .

input:
permutation
w = (w1, . . . ,wn)
of the letters 1, . . . , n

output:
standard tableau P ,
standard tableau Q,

P and Q have the same shape
with n boxes

example:
w = (2, 5, 7, 1, 9, 6, 8, 3, 4)

1 3 4 8

2 5 6

7 9

1 2 3 5

4 6 7

8 9

insertion tableau P(w) recording tableau Q(w)
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(discrete) Fourier transform
instead of a studying a function on the real line x 7→ f (x)
it is better to study its Fourier transform

λ 7→
∫

e iλx f (x) dx

instead of studying a sequence (a1, a2, . . . , an)
it is better to study its discrete Fourier transform

k 7→
∑

1≤m≤n
e2πi km

n am

how to define Fourier transform on a non-commutative group?
−→representation theory
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representations 1
representation theory: how an abstract group
can be concretely realized as a group of matrices?

Example

symmetric group S(3)
permutations of {1, 2, 3}

1

2 3

formal definition: representation ρ of a group G is a homomorphism

ρ : G → Mk

from the group to invertible matrices
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representations 2

Example

any rotation of the
dodecahedron gives
an even permutation of the
five cubes,
element of the alternating
group A(5)

this is a bijection

revert the optics:
representation of the
alternating group A(5)
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representations 2

Example

any rotation of the
dodecahedron gives
an even permutation of the
five cubes,
element of the alternating
group A(5)

this is a bijection

revert the optics:
representation of the
alternating group A(5)
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irreducible representations
of the symmetric groups S(1) ⊂ S(2) ⊂ S(3) ⊂ · · ·

· · ·

representation theory ←→ combinatorics
today: Markov chain



LIS RSK representations limit shape limit distribution Hammersley process the proof the end

Ulam’s problem, on steroids
πn be a uniformly random
permutation of 1, 2, . . . , n;

what can you say about the shape
of tableaux P(πn) and Q(πn)
in the limit n→∞?

if λ is a diagram with n boxes, its
probability is equal to

P(λ) =
f λ × f λ

n!
,

where f λ is the number of
standard Young tableaux
of shape λ
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πn be a uniformly random
permutation of 1, 2, . . . , n;

what can you say about the shape
of tableaux P(πn) and Q(πn)
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if λ is a diagram with n boxes, its
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P(λ) =
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hook-length formula

*

h∗ = 5

if λ is a diagram with n boxes,
the number of standard Young
tableaux of this shape is equal to

f λ =
n!∏

�∈λ h�

Further steps:
logarithm changes a product to a sum,
the sum can be approximated by a (double) integral,
variational calculus is your friend,
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Ulam’s problem, on steroids
πn be a uniformly random
permutation of 1, 2, . . . , n;

what can you say about the shape
of tableaux P(πn) and Q(πn)
in the limit n→∞?

yes, there exists a limit shape!
Logan&Shepp,
Vershik&Kerov 1977

2
√
n

2
√
n

Corollary:

lim
n→∞

E LISn√
n

= 2
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Ulam:
what is the limit

distribution of Longest
Increasing

Subsequence?

180 185 190 195 200 205
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Ulam:
what is the limit

distribution of Longest
Increasing

Subsequence?

Gauss?

180 185 190 195 200 205
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Ulam:
what is the limit

distribution of Longest
Increasing

Subsequence?

Gauss?

180 185 190 195 200 205

NO!
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Ulam:
what is the limit

distribution of Longest
Increasing

Subsequence?

Gauss? surprise:
this is

Tracy–Widom
distribution

180 185 190 195 200 205

NO!
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Ulam:
what is the limit

distribution of Longest
Increasing

Subsequence?

Gauss? surprise:
this is

Tracy–Widom
distribution

180 185 190 195 200 205

E LISn ≈ 2 n
1/2

Var LISn ∼ n
1/3 � n

1/2 NO!
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universal, the most important probability distribution

the following random variables
(after shift and rescaling)
have the same distribution
(=Tracy–Widom distribution):

the length of the longest increasing subsequence LIS(πn)
in a random permutation 1, . . . , n, dla n→∞
Baik, Deift, Johansson
Okounkov

the largest eigenvalue
of the most beautiful hermitian random matrix n × n
for n→∞,
e.x. growing interface between turbulences in a liquid cristal
Takeuchi, Sano, Sasamoto, Spohn



LIS RSK representations limit shape limit distribution Hammersley process the proof the end



LIS RSK representations limit shape limit distribution Hammersley process the proof the end

product placement 1

legal PDF file
available for free
on the author’s
website
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today:
new improved version of a theorem of Aldous and Diaconis
about −→ Hammersley process
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x

t

1 2 3 4 5 6 7 8

3 4 8
6

8

3 4 6
2

3

2 4 6
7

2 4 6 7
5

6

2 4 5 7
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Hammersley process
sample black points in [0, 1]× R+

by Poisson point process with unit intensity

let x1(t), x2(t), . . . be positions of the particles at time t

Theorem (Aldous, Diaconis 1995; version about P)
for any 0 < w < 1 the random set{√

t
(
xi (t)− w

)
: i = 1, 2, . . .

}
converges in distribution to Poisson point process with intensity 1√

w

in the limit t →∞

a result about the bottom row of the insertion tableau
after ≈ t steps of RSK
applied to independent random variables
with the uniform distribution U(0, 1)
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Plancherel growth process λ(1) ↗ λ(2) ↗ · · ·

· · ·

let (π1, . . . , πk) be a uniformly random permutation of 1, . . . , k ;
define λ(n) = RSK(π1, . . . , πn) to be the common shape
of the insertion and recording tableau related to the prefix of π
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Plancherel growth process λ(1) ↗ λ(2) ↗ · · ·

· · ·

let (ξ1, ξ2, . . . ) be i.i.d. U(0, 1) random variables from [0, 1]
define λ(n) = RSK(ξ1, . . . , ξn) to be the common shape
of the insertion and recording tableau related to the prefix of ξ



LIS RSK representations limit shape limit distribution Hammersley process the proof the end

growth of LIS, growth of the bottom row

Theorem (Aldous, Diaconis 1995; version about Q)
the random function

R+ 3 t 7→ λ
(n+bt

√
nc)

1 − λ(n)1

converges in distribution to Poisson process

R+ 3 t 7→ Nt

as n→∞

Maślanka, Marciniak, Śniady 2020:
extension to more than one row

proof inspired by Vershik and Kerov 1985
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Plancherel growth process:
probability distribution for fixed time

for any diagram µ with n boxes

P
[
λ(n) = µ

]
=

f µ × f µ

n!
, “Plancherel measure of order n”

where f µ is the number of standard Young tableaux with shape µ

Hint: use RSK bijection; arbitrary P and Q with shape µ
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Plancherel growth process:
probability distribution of

(
λ(n−1), λ(n)

)
for any diagram µ with n − 1 boxes
and any diagram ν with n boxes
such that µ↗ ν

P
[
λ(n−1) = µ and λ(n) = ν

]
=

f µ × f ν

n!
=√

P
(
λ(n−1) = µ

)√
P
(
λ(n) = ν

)
√
n

where f µ is the number of standard Young tableaux with shape µ

Hint: use RSK bijection;
arbitrary tableau P with shape ν,
Q \ {n} is an arbitrary tableau with shape µ
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distribution of a prefix λ(1) ↗ · · · ↗ λ(n)

P
[(
λ(1), . . . , λ(n)

)
=
(
µ(1), . . . , µ(n)

)]
=

f µ
(n) × 1
n!

depends only on the endpoint
Hint: use RSK bijection; arbitrary P , specific Q

corollary:
Plancherel growth process λ(1) ↗ λ(2) ↗ · · · is a Markov chain
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Def: E (n)
1 is the event that

λ(n) = grow1 λ
(n−1)︸ ︷︷ ︸

one box added in the bottom row

P
(
E
(1)
1

)
≥ P

(
E
(2)
1

)
≥ · · ·

E LISn = Eλ(n)1 = P
(
E
(1)
1

)
+· · ·+P

(
E
(n)
1

)

lim
n→∞

E LISn√
n

= 2

2
√
n

2
√
n

=⇒ lim
n→∞

√
n P

(
E
(n)
1

)
︸ ︷︷ ︸

cn

= 1
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vector space of functions on the set Yn of diagrams with n boxes;

for A ⊆ Yn define scalar product 〈f , g〉A =
∑
λ∈A

fλgλ

and the norm ‖f ‖A =
√
〈f , f 〉A

Yµ :=
f µ√
n!

=
√

P(λ(n) = µ),

Xµ :=
f del1 µ√
(n − 1)!

=
√
P(λ(n−1) = del1 µ),

〈Y ,Y 〉A = P
(
λ(n) ∈ A

)
,

〈X ,X 〉A = P
(
grow1 λ

(n−1) ∈ A
)
,

〈X ,Y 〉A =
√
n P

(
λ(n) ∈ A and E

(n)
1

)
,
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〈Y ,Y 〉A = P
(
λ(n) ∈ A

)
,

〈X ,X 〉A = P
(
grow1 λ

(n−1) ∈ A
)
,

〈X ,Y 〉A =
√
n P

(
λ(n) ∈ A and E

(n)
1

)
,
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lim
n→∞

√
n P

(
E
(n)
1

)
︸ ︷︷ ︸

cn

= 1

lim
n→∞

∥∥c−1
n X − Y

∥∥2
Yn

= lim
n→∞
〈c−1

n X − Y , c−1
n X − Y 〉Yn = 0

P
(
λ(n) ∈ A

∣∣∣E (n)
1

)
− P

(
λ(n) ∈ A

)
=
〈
c−1
n X − Y ,Y

〉
A

≤
∥∥c−1

n X − Y
∥∥
A
‖Y ‖A → 0

〈Y ,Y 〉A = P
(
λ(n) ∈ A

)
,

〈X ,X 〉A = P
(
grow1 λ

(n−1) ∈ A
)
,

〈X ,Y 〉A =
√
n P

(
λ(n) ∈ A and E

(n)
1

)
,
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lim
n→∞

√
n P

(
E
(n)
1

)
︸ ︷︷ ︸

cn

= 1

lim
n→∞

∥∥c−1
n X − Y

∥∥2
Yn

= lim
n→∞
〈c−1

n X − Y , c−1
n X − Y 〉Yn = 0

P
(
λ(n) ∈ A

∣∣∣E (n)
1

)
− P

(
λ(n) ∈ A

)
=
〈
c−1
n X − Y ,Y

〉
A

≤
∥∥c−1

n X − Y
∥∥
A
‖Y ‖A → 0
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lim
n→∞

√
n P

(
E
(n)
1

)
︸ ︷︷ ︸

cn

= 1

lim
n→∞

∥∥c−1
n X − Y

∥∥2
Yn

= lim
n→∞
〈c−1

n X − Y , c−1
n X − Y 〉Yn = 0

P
(
λ(n) ∈ A

∣∣∣E (n)
1

)
− P

(
λ(n) ∈ A

)
=
〈
c−1
n X − Y ,Y

〉
A

≤
∥∥c−1

n X − Y
∥∥
A
‖Y ‖A → 0

conclusion: total variation distance between
probability distribution of λ(n), and
the conditional probability distribution of λ(n)

under the condition that E (n)
1 occured

converges to zero, as n→∞
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conclusion: total variation distance between
probability distribution of λ(n), and
the conditional probability distribution of λ(n)

under the condition that E (n)
1 occured

converges to zero, as n→∞
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moral lesson: information that the event E (n)
1 occurred

(or did not occur) gives us no additional information about the
probability distribution of λ(n)

conclusion: total variation distance between
probability distribution of λ(n), and
the conditional probability distribution of λ(n)

under the condition that E (n)
1 occured

converges to zero, as n→∞
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moral lesson: information that the event E (n)
1 occurred

(or did not occur) gives us no additional information about the
probability distribution of λ(n)
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moral lesson: information that the event E (n)
1 occurred

(or did not occur) gives us no additional information about the
probability distribution of λ(n)

iterate this argument and: total variation distance between(
E
(n)
1 , . . . ,E

(m)
1

)
, and

the sequence of independent Bernoulli random variables(
Ẽ
(n)
1 , . . . , Ẽ

(m)
1

)
is of order o

(
m−n√

n

)
=⇒ Poisson limit theorem
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Łukasz Maślanka,
Mikołaj Marciniak,
Piotr Śniady
Poisson limit theorems
for the Robinson–Schensted
correspondence
and the Hammersley
multi-line process
arXiv:2005.13824

https://arxiv.org/abs/2005.13824
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the new proof has some hidden extra applications

−→ St. Petersburg Seminar
on Representation Theory and
Dynamical Systems
June 10, 2020
17.00 MSK (Moscow time),
16.00 CEST (Warsaw time)
Zoom meeting id: 933-433-492
Password: the order of the
symmetric group S(6)

Łukasz Maślanka,
Mikołaj Marciniak,
Piotr Śniady
Poisson limit
of bumping routes
in the Robinson–Schensted
correspondence
arXiv:2005.14397

1
2

3
6

16
23

24
30

31
45

4
5

9
11

29
34

42
52

61
66

7
10

18
21

32
36

47
69

71
79

8
12

20
22

38
43

49
78

81
86

13
15

28
35

39
48

56
87

98
101

14
27

37
50

58
84

106
113

124
146

17
33

41
54

72
109

120
144

149
151

19
46

57
63

73
129

139
150

173
180

25
51

65
67

91
130

148
165

175
231

1
2

3

1 2 3 4 5 6 7

x

y

http://www.pdmi.ras.ru/~rtheory/nextseme.html
http://www.pdmi.ras.ru/~rtheory/nextseme.html
http://www.pdmi.ras.ru/~rtheory/nextseme.html
https://arxiv.org/abs/2005.14397


LIS RSK representations limit shape limit distribution Hammersley process the proof the end

the new proof has some hidden extra applications

−→ Journée-séminaire de
combinatoire CALIN,
Laboratoire d’Informatique de
Paris Nord
June 16, 2020
14.00 CEST (Paris time)

Łukasz Maślanka,
Mikołaj Marciniak,
Piotr Śniady
Poisson limit
of bumping routes
in the Robinson–Schensted
correspondence
arXiv:2005.14397
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product placement 3
scholarship for a PhD student
−→ psniady.impan.pl/jobs
application deadline: June 5!

http://psniady.impan.pl/jobs
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