
Cunnlents in action
.



Toy example : random  matrices
.

GUE random  matrix

X=X
' " =[ X; ;]

(Xij )
, , ;

, , .sn
form  a

NZ ' dimensional complex centered Gaussian vector

Covariance
"

¢ Xij Xke = It [ it ] [j=k ]

XI = X
; ; ( ⇐ X=X* ) Homework : how to produce  such random  matrices

in  a  simple and natural way
?

Question : joint  distribution  of the random  variables
ztr X

,
try

,

tX3
,

...

.

¥utr
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X
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It
. 't true
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= £ [ Xii .
Xizin Xi

,  in Xic
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... ,ic , SN -_ -
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am+ µ÷ [ Xin
 ifXizin Xi
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V=4 hou /
hole

E=4thz= / u

I.{
+ z €€€4X= 2 sphere sphere

z
2

trx trx

pair partition  =  ribbons  which connect vertices on the holes

¥mur  of  spine .es
.

I

N#%€
?

=
.

y
= µ

X - 2 # traces

µ # vertices 12

after gluing the ribbons
,

the collection  of  spheres  with holes becomes ANOTHER collection  of

spheres  with holes :

each new  sphere  =  connected component Erler characteristic

each new hole = loop # V = # factors

# E= # factor,  + #taL÷
fixing the holes : to  each hole glue  a  disk

. # F  

= # traces  + # loops

Outcome :  surface  without boundary .

its topology = ? X= # V . # Et #F= - #¥L→- + # trace
. + # loops



Step 1 .

E # XP
'

... + xpe ]=
L =P 't ' . + pe

- I=( 1,2 ,  
. . -

, pn )

t.si#e.n$lXii.

" " Xiia
,]= ( Pitt ,

... - ,P .tk )

'

 
.

'

] I  encodes the product et  traces  wem.me?.a..u.+tE#niZInIgE=..;;;.lItofia.IiIYatgaeinteatain

.
 variance

- X - Ze

=L N

matching s

2- Zgenus

Step 2 t

KHRX "

,

... ,trXpej=[ µ×
- 2e

matching ,  which

result  with  a  connected

surface

wknd:txn
,

... ,+x
" )=O(µue¥ )

-
1there  are l -1  commas  here

Ttawnse.ie !



Moral lessons
.

typical phenomena for  random

• each comma  =
 degree falls by 2 matrices  and for  representations .

•
we  consider today Only oriented / orientated  surfaces

⇒ X=2 - 2g is  an  even  number

⇒ all exponents  in N have the same parity
•

your  wmbinatovics  uses  non . orientated surfaces
?

⇒ both parities  of  exponents  in  N
.

• ( LT :

( Tr X
' "

"'
- Catalan;)

↳ itscentered Gaussian vector

Homework :  Covariance
?

Corollary
if Pi  =P :( tr X. 4×2

,
... )

"

stability of  decay of cumulants
"

[
polynomial

→ a lot  of CLTS

then KIP
. ,R

,
... ,Pe)= 011M¥)

Hint : formula of Leon .v&Sirae✓



How to  adapt this to the example

Approximately
of random  matrices from th

previous page
?

E : A - B A=Alg( t  ✓ x. try
,

... )

Z - graded /filtered algebras deg tr X
"

=O / rey simple qadato .

B = ¢ [ In ] polynomials in £
deg Fln ) Ed  ⇐>  Icn )=O( Nd)

.

Def .

E has  approximate factorization property if÷
leg ,3(KIX

. ,
...,×e))E[ degix ;

 -2k - 1) Vx
. ,

... ,xeet

approximate factorization property is  a good news .

for  applications  we also  want to have  information  about

K ( X ) = EX

)
for  most  application ,  it  is  enough

and to know  only the  dominant

K ( Xn ,X<)= Gv ( X
, ,X .

) part ( with  respect  to the

filtration  on B)
.



Def ZEA generates  nicely A  if
each XEA can be  expressed as  a polynomial in the elements  of 2

AND each monomial of this polynomial is  of  degree f degree  of X
.

EI 1. × ,x2
,

... generate  nicely Q[x ]

ttx ,×,x2 ,
... DO NOT generate  nicely E[ × ]

Homework :  show that  if Z generates  nicely A and ( * ) holds true

for all X . ,
... ,XeeZ then l* ) holds true for all X

. ,
... ,XeeA .

HINT : Leonor & Shiraev
.

moral lesson :  it  is  enough to prove

Approximate factorization property on  some

( special ) basis ?

I



Et The if Efg and EBE
B

A - B have  approximate factorization property

µ\LEE thenEE=EtEoEtB also ha ,

e

E
approximate fabrication property .

Hint : Billinger 's formula + count  commas
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1

. example 2
easy example I

example 3 E = id isomorphism

�1� [

Siamak
] = e[zY

.
]

expectationwith disjoint product with convolution

"

 
' ifE. trs

Product
"

kind - of -

l /
easy

, , ,

,T.myµ[=+rgi partial permutation , !

; >

Y

example 4

ELP ] - ¢
Partitions  with

E=trg

concatenation four  setups , four  versions  of  approximate factorization p.ope.ly .

How  are they related  one to  another ?

HINT : they  are  equivalent  and  we know how E and Gv  are

.
related .

*



Representation theory and approximate factorization .

Common
 setup :

( fn ) is  a  sequence  of ( reducible ) representations

Sn : Sn - End K

pointuise product  of functions

this  example has  a probabilistic  meaning

Example 1
.

free  cnmulant
A  = algebra  of

ate
functions  on ¥

f
A  = Alg ( Chit :

 it  is  a partition) = Alg ( Ra : k 3 2) =

= Span ( Cht :
 it  is  a partition)

= Aly ( Chu : k > t ) = Alg ( Se : k > 2)
( functional  of  share

filtration :  deg Chit  = ITHLCI ) gradation :  degRu=deg Sa = K

it takes  some time  and effort to

check that  all above  definitions  of

A and its filtration  are equivalent

B = { (

an
) : Ia .

I grows at  most like  a polynomial }
filtration :

deg (

an
) Ed ⇐>

a.
=

Owned)=O(n%
) if Etb :t→B has

I

.
approximate factorization property ,

we  can  view law  of large

EAB (F)= E FIX
. ) numbers  and CLT

.

where In -

random Young diagram  with k boxes
my .  dim  VT

Pn(
7) =

#

V.
= § m

,
. V

'



Example 1 = Example 2
.

A  =  span ( It :
 I is  a partition ) elements  of A  are certain elements  in

Alg ( I. :  I  is  a  patio . ) ELP ] = fin ¢[P
. ]

they ( Zk : k > a )

product  = the  usual
"

convolution
"

product

filtration :  deg -2 ,t= ltltllit )

Example A = Example 2
.

So  approximate factorization pnyety in Example 1 ⇐>

approximate factorization  property in Example 2
.

Chit - [
it

so  it  is trivial to  relate E and Cov

in both contexts
.

The  only challenge : find relation between :

• free  amulets (Ru )
• functional, of  shape ( Sa )

•

characters (Un
,
)



Example 3
.

A  =  span ( 2
,

:
 it is  a partition )

Alg ( I
, ,

:  I  is  a  pa.t.to . )

|
Product  =  disjoint product .

Aly ( Zk : k > i )

filtration :  deg -2 ,t= Itltllit )



The
. this  identity map is

. example 2

example 3 E , ;D not  as trivial as  it

ELP] -¢[P ] might  seem !
Conditional

expectation different  multiplicationwith disjoint product with convolution

product
structures :  cumulants  of

f- E=id measure the
E =  

ioi '

difference between the

both ¥
and  ¥ have  approximate factorisation property .

convolution product  and

disjoint product .

Exercise
.

It  is enough to
prove this  result for  one arrow

.

HINT :

A

inds
A

'

A  and A
'

are equal as  vector

µ
. , spaces but NOT as algebras.

t.tiitiis.tn ¥§ III.anaisagyen.h.net#orsmes
cnmulants have VERY

simple form ( which ? )
HINT :  use Billinger 's formula to find

relationship between  cumularts for  id  an  it ?

→ .

Example
.

O= Kt
"

"( x. g) = kid
"

( kidlx )
, kidly ) )t

kid
'

( kid 1
x. D) =

÷ ' ( x. y )

= Kim ( x. g) + kid (
x. g)

→ USE induction !



Proof for it

example 2

example 3 E - id

ELP]antal ]
expectationwith disjoint product with convolution

product

Enough to  show that :

"

yde ,

€
: k > 1) generate the

algebra  in  a  nice  way that  is  compatible  with filtration "

.

id

deg (

Kkk
. ,

...

,

Ine
) ) E 72 deg I

'm
.

- 2( l - 1)

÷
.

due to the isomorphism between Example 1
.

and Example 2 we  can  identify Z ,  with Chit

with a  small alone  of  notation  it  makes  sense to

speak about Kid ( Uk
. ,

... . ,Uu
.
)

id

deg ( Kkhk, ,

...

, Chee
) ) E [ deg

Chu
.

- 2( l - 1)

÷
.

Example
.

kid (

Ze
.

,Zn
.

)= Et

#
e.

•

In
.
) - Else

.
) . Elt

... ) =

[1
k

, .kz
- [

k
.

. [
k

.

li Chu
. ,n .

- Chu
.

Un
.



the filtration  on  span ( Ui )
[ emma

.

Let Fe span ( Cht ) was  constructed from the vey

f- today we  need  only E start  so that this  condition  is

then  deg F  =
 degree  of Stanley polynomial fulfilled .

F( pxq ) !  carefully ,  we  need

p=( Pr ,
... ,pe ) of  arbitrary

91€ 9^ ,
. . .

,  qr ) length

⇒⇒to .⇒
a

degree  of FE  span ( U , ) =
 information  on  asymptotic ,  of F ( I ) on large

Young diagrams .



Stanley formula :

Ch
.

... ,

!H=
the

""

[ 11%
, .lt )

8
. ,8zES( hnt .  . +  he )

8^82=(112 ,
. . ,  4) ( hnn ,

. , 4. +  he ) .
. . .

e+e1

( Uk
. ,

... ,ue
' Uu ;

,
. ,w ,

) (1) = tr ) 2
8

, .bz E  SC hat .  - the )×S( hit .  . + he :)

6
, bz = . . .

.

Corollary :

[K
" ( Uk

. ,

...

, one ) ] ( I ) =

e  -

t " ?as
" ... ... ,

the ' ' '

8
,

82  = ( 1,2
,

...

, 4) ( 4^+1,
...

, 4.  
th . ) . .  - /( 8

, ,8 , > is  TRANSITIVE

( =  Map  is  CONNECTED ) degree  = # cycles (4) + # cycles (22 ) =

# Vertices  of the may £
the  map  is  connected ! k .+ .  . + ke - l +2 =

X = 2 - 2 genus
-< 2 ( k.tt )+ .  . + I ketr ) - 2l +2 =

"
=

 deg Chu .+
. .+  deg Chu

.
-24 - 1)

# V - # Et # F  =

# V - ( k .+ .  . + ke ) + l



Proof for Ill

. n

Example
.

Kid ( Ee
. ,

In
.

)= LF ( I
e.

'In .
) - El -2k

.)•ElE ... ) =

.

%
.

. In
.

- ZK
. .kz

"
 " tenet:*:' " in

'=gtimeline.li?yEIiiIi.EEiIiIIt#
.

( In Ii . .#e ,
Air A  a.  uAe ) otherwise

÷
 of  support  E

lanlt . . + IAEI - ( l . a )

this  is  not  enough and a topological argument  is  necessary .
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Abstract. We study asymptotics of reducible representations of the symmetric groups Sq

for large q. We decompose such a representation as a sum of irreducible components (or,
alternatively, Young diagrams) and we ask what is the character of a randomly chosen com-
ponent (or, what is the shape of a randomly chosen Young diagram). Our main result is
that for a large class of representations the fluctuations of characters (and fluctuations of the
shape of theYoung diagrams) are asymptotically Gaussian; in this way we generalize Kerov’s
central limit theorem. The considered class consists of representations for which the char-
acters almost factorize and this class includes, for example, the left-regular representation
(Plancherel measure), irreducible representations and tensor representations. This class is
also closed under induction, restriction, outer product and tensor product of representations.
Our main tool in the proof is the method of genus expansion, well known from the random
matrix theory.

1. Introduction

1.1. Representations of large symmetric groups

Irreducible representations of the symmetric groups Sq are indexed by Young
diagrams and nearly all questions about them, such as values of the characters
or decomposition into irreducible components of a restriction, induction, tensor
product or outer product of representations can be answered by combinatorial algo-
rithms such as Murnaghan-Nakayama formula or the Littlewood-Richardson rule.
Unfortunately, these exact combinatorial tools become very complicated and cum-
bersome when the size of the symmetric group Sq tends to infinity. For example, a
restriction of an irreducible representation consists typically of a very large number
of Young diagrams and listing them all does not give much insight into their struc-
ture. In order to deal with such questions in the asymptotic region when q → ∞
we should be more modest and ask questions of a more statistical flavor: what is
the typical shape of a Young diagram contributing to a given representation? what
are the fluctuations of the Young diagrams around the most probable shape?

In this article we are interested in the situation when—speaking informally—
a typical Young diagram contributing to the considered representation of Sq has
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