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matrices



What  can  we
lean about the representations

of die
groups from the viewpoint  of

random  matrix they / free probability they ?

CRASH Course  ON LIE Groups AND LIE ALGEDRAJ
.

G- (compact ) die
gap g-

- tangent  space to G

/
at group identity

g #)
"

infinite, ;nd neighborhood of e

"

/ Philosophy : group G is  a  difficult ,

group  unit nonlinear  object .

Replace it  with a linear  object

how
 much of the multiplication from G

fan
you  see  on the tangent  space g-

?

V
, wtg

"

EEK ,
e → o

"

( ftev ) ( ttew ) = 1 + e(o+w)+ . ...i€÷÷"}I:}"

a ..⇒→ . :p ... :.a . . anion
.

in the tangent  space g-

NOT MUCH
. Cf OR MAYBE ?

-



in order to see interesting structures we  need to

look on the quadratic terms

for 0
,

we 9- this  calculation  is  a cheating ,
but  it  on

"

ghgh
"

for  g.h.ca
,  g. h→ a

"

&  coveted to  9  rigorous  mathematics±to )( tie'w)(t.eu )(t.eu )¥element  of  G  in

infinitesimal neighborhood  of 1
.

It EE
' ( UW + ( #-

wu  +  uy)

- e2 (v2+w2) + . ...

set 2z, @+ ev )( t.ie 'w)( t.eu ) ( he 'w)= uw - wo =

=[ on ]

NET Lie bracket  =

"

second derivative  of

the  multiplication  in G
"

this  is how  much of the multiplication  in 6

you  see  in the tangent  space
"



the best concrete choice for today

G= U ( d )
g-

= REAL linear  space  of antihermitian  matrices

on § HAVE  THE SAME

,y,eRoEnPRyEsEnTATioN

G= GL ( d ) g-
= linear  space  of all matrices

Lie bracket [ X. Y ] = XY - YX



Our favorite  object f. today :

represent # on  of G
,

i. e  a GROUP HOMOMORPHISM

g : G - End ( Vs)

51 9h )=glg)g( h ) -

-

.

inventive

-
.

,

,
,

,

,

by taking the derivative  of this  map we get  a

:
representation  of the Lie algebra \

|
s : £ - Eaws ) ,

( not  necessarily
/

invertible ) /

/

linear  map
which

preserves
the bracket -

.

.

g( [ x. d) = [ g( × )
, sc ,)]←'

"

/ tanning t

:c;tI±Ii!Y '

Surprisingly
multiplication ef  matiicy

.

restrictive

condition
.

applications .| motivation >



TOY TOY EXAMPLE '

d

G = GLC d) acts  on
¢ action  on  a

Y
linear  space

µ
=  representation

d d

action  on
¢ @

.
. .  @ ¢

^

not  necessarily
irreducible

Moral lesson : but  we  don't  care

even  if the die gap has a

matrix  stature ( "

it  is linear
" )

[
by a clever ihoie  of

a  subspace you

the representation  may
be  a  very may try to get  irreducible

nonlinear  map . representations



irreducible representations  indexed by signatures

ftp.t.
> . . . >

To
' )

s
. ,

. .

,

so
, €27

Fulham... ... , ... .

k¥5:L.IT
than

these  representations .

feelin:#II .

User 's Manual to  semisinple die algebras .

for  a general (seniinpla) die
group this correspond ,

to

"

the highest weight
'

µ ernatiue  approach :

use Sohn .  - Weyl duality



TYPICAL PROBLEM
.

✓ '

or
"

=  toe⇐µ / can  we  understand

irreducible representations these  numbers ?

OF  THE  SAME  GROUP
multiplicity ,

E { 91,2 ,
... }

if G=U( d) or G=6L( d)

Chu - are called LITTLEWOOD - RICHARDSON
coefficients .

-

can be  calculated by LITTLEWOOD - RICHARDSON RULE

BAD NEWS :  complicated
bad computational complexity .

-

can  we have approximate ) asymptotic  description )
which is more tractable ? $

→ .

|
! → interesting research active

Geometric Complexity Theory

→ Greta Panora



probabilistic  viewpoint on Littlewood - Richardson
.

fix I and
µ

✓ '
• v

"
=  to e

. ; vr

µ
-

irreducible representations /
multiplicity ,

C- { 91,2 , . . . }

Cd .

 dim Vr

P ( v ) :-.  -

din V
'

.

 dim Vt
^

probability measure  on G

"

random  irreducible reputation
"

% lau  of large  numbers ?

{ central limit the .eu
?

"

A
, µ

→ a

"



tensor products of  representations of Lie algebra ,

stating point : TWO reputation , of THE SAME LIE Group G

s ,
: G - End V

" '

sz : G - End V
' "

TENSOR PRODUCT

( goes . ) : G - End V
" '

@ V
" '

g- g. ( g) • sdg )

IN THE NEIGHBORHOOD OF IDENTITY :

#
Lie group representation ,

xeg
ttex - g. ( ttex ) ogdltex ) =

= ( ltesdx ) ) o ( ttesdx ) ) =

die algebra -9
remote "

= I + e ( g. ( × ) @ 1 +l@sadxDtidieoleb.a
+ E< . . .  .

representation )

Moral lesson : TENSOR REPRESENTATION OF GE ALGEBRA

× 1- sdx ) @ 1 + logzlx )

is given by
"

Leibnitz  mle
"

.



https://arxiv.org/abs/1611.01892

TOY EXAMPLE 01=2 for bet

this  group is  not  simply connected
,

results  we

better take  its  UNIVERSAL  COVER Clifford
/ Spin (3) = SUC 2) algebra , .

6=50*3) #
have  the  same Lie algebra

symmetries  of the phy.i.ae pace
R3

" ' 3) ±  "  ' 2)

the  most  of  as live  in

G=

§U(
2) of

=  dntihermitian  matrices

with trace ZERO

irreducible representation, of Uk ) are  indexed by 1^372

| hint :  Restriction ! In
,

)eEZ

irreducible representation,
Vt

of 5412) are  indexed by je { 0,12 ,
.

. }
HINT : j= A

,

- Tc

Yep
. e) entatron ,  of 5412 ) are

not  very complicated !

f-
5412 ) acts  on  each factor

Concrete  Version :
"

diagonally
"

'

jksym( ¢2 @ . ..±
j futon

→

Appendix D



What is angular  momentum in classical mechanics ?

"

angular  momentum  is the physical quantity

With related to the rotational symmetry of the
1 "

D space

xeg
& f one - parameter  group

e- ×
of  symmetries of the physical pace

Rst -> e e G
1

,
Emma Noether :

1 One - parameter group of symmetries
I of the phase -

space ←

I § ← physical quantity which is

I

preserved over time
V for  a  more concrete answer you  need

R |
the formalism  of lagrangian

Lesson learned :
 angular  momentum  is  an element of

* *

[ so (3) ] ±[saw ]
\

dual space*
int : for bet  results findthe usual viewpoint D= ( ]× , ] , , ]z )

an
 isomorphism  of 500¥ .us

related to
gap ,  of oiizIoiy|R3±[s°c3) I

rotation ,  along , . .

°2×

of ^|

caajgojniodf wadjoint  action

5013 ) of SOG )



don't like  dual spaces
?

fix the isomorphism sul 2)
*

±su( 2) EMZC e)
.

Hint :  use  a bilinear form  on Mzce )

< x. D= Trxty
|th%eY"

advance !

good !  matrices !

angular  momentum  is  an element of ...
/

sds ) ± [ so (3) ]* ±[su(2 ) ]* I sat )

real antisymmetric  matrices 3×3
. trace  zero  antihermtian  matrices 2×2

( * ) continued .
Example of an  isomorphism  of SUK ) modules

1123 e- (traceless 2×2 antihemitian  matias )( is given by Pauli matrices (multiplied by i=A )

:

§ E /R3
aaespond ,

to  a traceless  antihermitian  matrix

with eigenvalnes ±i Dl

TER '

uniformly random  on  a  sphere  with radius D| Yateshit ,'S !
E- uniformly random  antihermitian  matrix

with eigenvulnes ±i tfl ,

formalization

 constants  depend on the = U [
 ' 

'

Dl
. ; ,g , ] lt

"

details  of the  isomo.ph ; ,m 1R3=[sub ) ]*



Quantum  system = Hilbert  space
N

/
unitary representation  of G = SOI s) or SUCZ )

"
how

 symmetries  of the physical space  are

implemented by a quantum  ztem ?
"



What is angular  momentum in quantum  mechanics ?

xeg
F-

t× One - parameter  group

Rs f 1- e E G of  symmetries of the physical space

Tf

applyyreientatonymnetie

, d- the
.
,+qhz" " d

tscx )

Rot -

g(et×)=e
elllse )

unitary transformations  of
the -

µ Hiuetpaa .

"

Enmmaglavnotutmhesetp "

:

generator - Esl 's-|ejyn;;fYn¥eta↳
/ physical

meaning
physicists prefer HERMITIAN operator ,  over

antihermitian
.

Lesson learned :  angular  momentum  is  an element  of
[ suh )j*

Sul }!
£013) ]* @ B ( M ) given by sols )⇒xi→ slx )

if you  are  a  real physicist ,

M¥11
,
#the

at  some places you  should add uantum Emma Noethe.

"

the Plank constant ht
.

" rh "



still

don't like dual
pace ,

?
ymatnaixynufheentieotuniuae

angub .  momentum  is  an element  of

[ Su 12 ) ]*•B( A) I sa( 2) o Bln )
-

I

given by PERELOMOV - POPOV MATRIX

.

]= [ skin ]
... ... ,

It'aI¥Ytk¥i÷:✓\*%¥€"→" "

2×2 matrix with non . connoting enties

Herriman
.

Wolff
't

.jo
"

argues,mYp⇒t
→ NONHERMITIAN MATRIX

.

eijfsulz )

|
↳ gg.gg .  an .gg , ...

?

| # �1� how to  convert  to  antihernitian  matrices
?

→ COMPLEXIFICATION !

�2� how to  deal with trace - zero ?



QUANTUM MECHANICS

irreducible representation, Vt
"

of G are  indexes by jelani . . }

"

angular  momentum =  spin  =jh is quantized
"

"

Quantum  addition of  angular  momenta
"

✓ @ Vk = e@ Eu ✓
l

"

we have two quantum  systems  with well-defined angular  momenta
.

we combine them  and put to  a  single box
.

what  can be possible values for the angular  momentum
, ,

of the system ?

TODO : maximally mixed state

probability distribution of l



Newtonian limit ←
"

what happens to
a quantum  system  when

it becomes  so large that quantum effects
disappear ?

' site;;¥IYY; ;.IE?;otsD
tnn -

"

Planck constant
"

tnnjn -

g
.

and tin - 0
.

rescaled PP matrix depends  on N

[ knsnkid ]
. ... .

=[ A
" ]

...

...
more generally : representation,  of Uld )

n%mntati
've  random  variables

µ# ( An
, ,

Z .  . - Z 1
µ

, , ) with  respect  to  E= tr  =  no . nah .us trace

j a ( s
.

3 .  . . 31$ )



https://arxiv.org/abs/math/0610285

convergence  of ( non - commutative ) moments

Theorem

Noncommutative joint distribution of ( Ais )
,⇐

, , , ,

converges ( as N - ° ) to the noncomntative  distribution

Of ( Xij )eg
.

, ,.ez
the '#random Haa .  unitary in Suk )

( more  generally :  G)

# ( more  generally : the whjshy;D

x=Gid=V[i
,]v*/ - uniformly random hemitian

matrix  with eigenvawe ,  tj
- commuting random  variables

the
same  result  remains tone for And compact die

guys G

|M#Iffy
,

. . ,y9g2
more  information  in this  one

Collins & Sniady TAMS(Indovina.tn#ntYIiefIy.Iigtixaaa

"

proof
"

- NEXT  PAGE



THIS Is THE  ONLY Rigorous  PART OF  THE PROOF

CLAIM |
non - asymptotic  result

no  passing to  the limit

The matrix [Ay .

] is unitarily invariant
,

i.e. the joint non  commutative  

distributions
of

|"fIfjjufj°

t '

( Aij ) and ( A'
ij ) are equal

-1

for [At;] =

YA V = ( von ) A ( Von )
(

as  you hire .

.

[µ
.ca?tEnsN ' )

deterministic

✓ is  a { random # unity matrix

random Haar

Pnef
~

for fixed ge G

intereiting map on the die
group

"

adjoint  action
"

G ⇒ h 1- ghj
"

=Adg

he
G ← LEG is  a fxpoit

¥ derivative  = transformation  on

the tangent  space

g-
⇒ x - Adg × e

g-
"

eEEtnEthpEIyYaIiItEiIIkneoaitat@miihsoYaEanxm.e-
g-

representation  of Lie  ALGEBRA g-

g( gxj
' ) = g(g) s ( x ) g( 5

' )
th :  slghj

' )=sl , ) slbsls 's |# rereseagtgtuiojAg!tE
take  derivative for  h→1



- g-
representation  of Lie  ALGEBRA g-

,S(
gxj

' ) = g(g) s ( × ) g( g-
 ' )

/ f- rep.es#rtigetg.4E

!

this
"

coordinates :

g=µ=
( µ ;)1

ij
1

g
COMPCEXIFICATION

\
× = Cue

"

the matrix  unit
"

€6

e G €f
'

u tiny t t
bkws( Zain (d)g.ee;) =tinder) s( en ) gfi ' )

ij

"

7slutAnglei' )2 Niall '
)ej

tnng
( eij )

gain
follow  immediately

.

ij
-

Aij Conclusion:-/.
,÷;?Y¥w ,

11 coniyvaotgdgb
'

↳
A'=g(u) Ag(u51[ utaei 'T ] ^

, ,

kl fan;uga+ , .on  of  pp  may ;×
|

is  equivalent  to  entyuie  animation
A )µ

of  each  et . > .

A u=vt . Ist:[III. ot

this  ;g.the right  way
to  do

) - z
Don't  like  tango ,e

-

Aif= An ¥ (

UT
) ;n g( eue )

@
T)

ejmniienxttinitonotpp



Conclusion
,

with bigger fonts.

.

( Va ) A I Voa ) = ( Ioslu )) A ( losius
' )



for this part you  need to hnou

the relationship BetweenThis . nota root |

nutmeg.ly?ui
"

?
And

i
1

•• knjn =O( ^ ) impte, that / 1

:
"

the
nom  of A  is  uniformly bounded

"

>
I

^

I(
for but  results

you MAY me the operator  norm I

• e %

.ae#tiiii.IIitiiieiiijE.a.Ef:.hn2gn(Te.j,eaeD=hn2fj=h] g( eie ) - [e=i]g( eu;D ,

= tin [j=h] Aie - tin [e=i ] Aue :
"

noncomnutativity converse , to  zero

"

7-
,

- :
:

the limit  distribution  of ( Ai ;) - if  exists - is  commutative
. ,

and G - invariant
. /

remaining difficulty :  study the eigenvalnes  distribution of the
✓

limiting random  matrix
.



Application : Littlewood - Richardson

TWO irreducible representations  of SUK )

gt '
: Sun ) - End ✓

" '

g
" '

: Suh ) - End ✓ ' 2)

(3)
g

= ghost"
: suu ) - End V "

@ V
' "

do not cremate  among themselves
PP matrix f)

[

sale

, ;) ]
,

;[sole ;) @ 1]¥[tos"
'

kid ]
,
j

✓ → Leibnitz  ale

entries Commute

with respect to tr -

- classically independent

"

sum  of two  independent  random  matrices

( uith non . counting entries )
"

not VERY metal if  ue  do  not have  extra  information



Application : asymptotic , of Littlewood - Richardson

TWO

sequences
of irreducible representations  of SUK )

i. Lt ,D

( i) C i )

( gn) - corresponds tojnehar ,2 ,
... }

.
C i )

. C i )

tnnjw -

j and tin - 0
.

Converse  in  distribution to  entries of a

pp mate ,× Na " ton  matrix lith prescribed eigenualees .

LA

Findley
. )]

,=Es"n'
lei ;) -01 ]

,g[tohnsYleiD]
,

✓ → Leibnitz  ale

entries Commute

with respect to tr -

- classically independent



convergence  of ( non - commutative ) moments

Theorem

Noncommutative joint distribution of ( Aij )
,⇐

, ... ,

converges ( as N - • ) to the noncomatative  distribution

Of ( ×ij)n
, ; , .ez

° he #random Haarunitay in Suk )

,

x=Gn=V[i
,

]v*
- uniformly random hemitian

matrix  with eigenuawe ,  tj

Application : asymptotic , of Littlewood - Richardson



https://arxiv.org/abs/1611.01892


