Piotr Śniady IMPAN

Lectures on random matrices and free probability theory

Lecture 3. GUE random matrices, part II

October 29, 2019

XN- GUE vandoon antix Genus expansion. for GUE ->[MS] Section 1.7 Section 1.8. previous lecture...] $E \int_{R}^{24} d\mu_{y} =$ Л N² дения (т) Tr IN = 2' **/** pali-patitions of <u>|</u>. GUE *k*1, 2, ..., 263 rinulan matex $= \sum_{i}^{7} \frac{1}{N^{2-\chi}}$

[MS, Setion 1.8]. Alternative viewpoint from $\frac{1}{N}T_{r}Y_{N}^{2k} =$ X "Look on the left indices!" $=\frac{1}{N}$ $\mathbb{E}\sum_{i=1}^{N}$ (91 iz (9; i,) 9 9 in is giania "# closed boop"= pairing = #cycles of (8 TT) J= (1,2,...,24) first farmand cycle TTE S24 permitation which consequents to the pair-partition. $= N + \delta \pi - k - 1$

 $\# \gamma \pi - k - 1 = ?$ D henth on the group Sn | 81 = n - #8 the minimal number of fators to write 8 au a product of transportions. $() | y | \leq | y | + | \pi^{-1} |$ $2k - \#\gamma \leq 2k - \#\sigma + 2k - \#\pi$ $\#_{\mathcal{T}} = k_{+}1.$ When triangle inequality becomes equality?

Def. partition	TT is CRC	nssiNG if	check to you the what a part tion	
there ex	rist indices	د < خ	< k < e	
such H	rent TT- T		· ·	
	C K	 <	
	ć, j, h, k	Jo not	belong to	
	the same	ungle bl	hoch of TT-	
<u>perti</u> partition if	is NONCRE	DSSING CROSSING	.	
Hint model	on the circl			- -

61. Robert Cori. Un code pour les graphes planaires et ses applications. Astérisque, No. 27. Société Mathématique de France, Paris, 1975.

-> Philippe Bione. Some popertie of Cossings and postition, Discrete MATH 1977 [Section 1.3.3, Theorem 1] Biane's result. Given partition II of [n] = {1,...,n}. Encode IT as a permutation from Sn this is a very clever idea. We will come back to it while $(\land))$ studying Weingarten calculas partition TI is NONCROSSING iff $|\gamma| = |\pi| + |\pi^{\prime}\gamma|$ COROLLARY : WE count NON CROSSING PAIR PARTITIONS

= # ways to legally write 2k Brachets

 $\lim_{N \to \infty} \int_{R} x^{2k} \frac{\partial E \mu_{N}(x)}{\partial E} = 2$ requires some arguments -> [MS, Section 1.3] = # Non-cosing portitions on [26] = lim E tr YN n-) oo the limit exists and is finite new $= \begin{pmatrix} \frac{1}{2\pi} \sqrt{4-x} & \frac{2}{x} \\ \frac{2}{x} \sqrt{4-x} & \frac{2}{x} \\ \frac{1}{x} \sqrt{4-x} & \frac{1}{x} \end{pmatrix}$ this shows that the $= \int_{X}^{2k} \frac{\partial \mu_{sc}}{\partial x} d\mu_{sc} dx$ HEAN eigenvolves dirtibution E fix converges to semicircular low plac in moments which is nice, but not exactly what we want.

Condution: $ \lim_{N \to \infty} \int_{\mathbb{R}}^{2u} dE \mu_{Y_N}(x) = \int_{\mathbb{R}}^{2u} d\mu_{x}(x) $ $ = \int_{\mathbb{R}}^{2u} d\mu_{x}(x) $
By symmetry assument	
$\int_{\mathbb{R}} x^{24+1} d\mathbb{E} \mu_{Y_N}(x) = O =$ \mathbb{R}	
$= \int_{R}^{2\pi H} d\mu_{s}(x)$	
"measures Epig converge to plsc in moments"	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

[fleshback from your undergod course of polladility theory] moments and convergence of measures \rightarrow [HS] Section 2.1. probability measures on R moments convergence in moments weak convergence of pebability measures measures determined by moments Carlenon's criterion Hint: if $\sum_{i=1}^{n} \frac{1}{e\sqrt{m_{in}}} = +\infty$ then moment problem is determinate Convergence in moments US weak convergence

Det
be say that a polarbilly mean variable.
We say that a polarbilly mean R is
the dishild on of X if

$$E f(X) = \int f d\mu$$
 for easy $f \in C_{\alpha}(R)$
R
Det
equence of probabilly measures on R
(M_n) converges weakly to a prob. measure μ
if $\lim_{n \to \infty} \int f d\mu_n = \int f d\mu$
for any $f \in C_{\alpha}(R)$
(Hint: $\int f d\mu_n = \int f d\mu$
 $\lim_{n \to \infty} F_{\mu_n}(X) = F_{\mu_n}(X)$ holds for
 $n \to \infty$
 $\lim_{k \to \infty} F_{\mu_n}(X) = F_{\mu_n}(X)$ holds for
 $\lim_{k \to \infty} F_{\mu_n}(X)$ holds for

convergence in moments is usually divideined les probabilists. For example: the limit might be not imigue. However, in the non-commutative sature a cannot really formhate "weak convergence of probability measure," and we have to

Hint: the kinst meanse place has compact support, 10 convergence in moments => weak convergence Conclusion

stich to moments.

lim Epy $= \mu_{sc}$