Piotr Śniady IMPAN

Lectures on random matrices and free probability theory

Lecture 4. GUE random matrices, part III

November 5, 2019

genus expansion for Covariance

 $\mathbb{E}\left(+, \gamma_{v}^{*}\right)\left(+, \gamma_{v}^{6}\right) =$

0 0 0

 $\sum_{i=1}^{n} \frac{1}{1/4-\chi}$ =

genus expansion for Covariance $\mathbb{E}\left(+, \gamma_{N}^{*}\right)\left(+, \gamma_{N}^{6}\right) =$ 2, -1/4- % + 11 - non- conne tes connected $T = T_{\mu}$ TT L pairing of dard, art, ..., arb } pointing of (1,2,..., a) Cartesian product $\int \frac{1}{\sqrt{2-\chi(\eta_{a})}}$ <u>Λ</u> N²⁻γ(ει) = ī, E + 7,6 E + Y,

 $C_{ov} \left(+ Y_{v}^{a}, + Y_{v}^{b} \right) =$ $= \sum_{i=1}^{n} \frac{1}{N^{4-x}}$ CONNECTED Minimal possible value of X = = two spheres; hat possible because of connectedness = 2 = two green dishs connectes by a a the = = single schere. $C_{ov}\left(+ Y_{v}^{q}, + Y_{v}^{6} \right) = O\left(\frac{1}{N^{2}}\right)$

•	· · · ·	· · ·	•	· · ·	· · ·			•			(<mark>he</mark> - FZ	<mark>b</mark> 7.	she > 8	د د ر د		ne gu	al 1	<mark>ク</mark>	i i Va	fa Z	ę	> 0)
•	· · · ·	· · ·	•	· · ·	· · ·	•		•						· · ·			· · ·		· · ·	•	· · ·	•	· · ·	•
•	ſ₽		-	t			a -		E	: 4	· · · · · · · · · · · · · · · · · · ·	7,	g .			>	ε						$\frac{1}{N^2}$	
•	· · · ·	· · ·	•	· · ·	· · ·	•	· · ·	•	· · ·	•	· · ·	· · ·	•		•	•	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•
•	· · · ·	· · ·	•	· · ·	· · ·	•	· · ·	•	· · ·	•	· · ·	· · ·	•	· · ·	•	•	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•
•	· · · ·	· · ·	•	· · ·	· · ·	•	· · ·	•	· · ·	•	· · ·	· · ·	•	· · ·	•	•	· · ·	•	· · ·	•	· · ·	•	· · ·	•
•	· · · ·	· · ·	•	· · ·	· · ·	•	· · ·	•	· · ·	•	· · ·	· ·	•	· · ·	•	•	· · ·	•	· · ·	•	· · ·	•	· · ·	•
•	· · · ·	· · ·	•	· · ·	· · ·	•	· · ·	•	· · ·	•				· ·	•	•	· · ·	•	· · ·	•	· · ·	•	· · ·	-
•	· · · ·	· · ·	•	- · ·	· ·	•	- •	•	· ·	-	- • • • • •	• •	•	• •	•	•	· · ·	•	- · ·	•	· ·	•	· · ·	•

Bord - Centelli lemme. if A, ER are made events st $\sum P(A_i) < \infty$ Then $\mathbb{P}\left(\bigcap_{i}\bigcup_{j>i}A_{i}\right)=O$ $\mathbb{P}\left(\{\omega \in \Omega : \text{ there are only finitely many } i: \\ \& \omega \in A_i; \}\right) = 1$ Conclusion $A_{i} = | + Y_{N}^{a} - H + Y_{N}^{a} | > \epsilon$ P(five D: there are only finitely my it 1, almont swely $| \downarrow \Upsilon_n^{\circ} - \notin \downarrow \Upsilon_n^{\circ} | > \varepsilon \} = 1$ $\mathbb{P}\left(\lim_{N}\sup_{N} + Y_{N}^{a} - \int x^{a} d\mu_{se}\right) \geq \varepsilon\right) = 1$ $P(B_n) = P(B_{\frac{1}{2}}) = P(B_{\frac{1}{2}}) = -1 \implies | (B_{\frac{1}{2}}) = -1 \implies |$ $\Rightarrow P(B_1 \circ A_2 A_2) = 1$ P(lim |+ IN- Sxª Juse |= 0) = 1

 $\lim_{N} tr I_{N}^{a} = \int x^{a} d\mu_{sc}$

a.s. Cout table forts.

ser in MYN moments Msc holds a.s.

he as

My N Hie

Corollary.

The spectral measure of a GUE random

matrix converges to the semicircule law.

as its size tends to infinity.

* convergence in the following serves:

-> almost surely. this requires patting GUE random matrices into the some (product) probability space.

-> in pobability. the topology of real convergence can be metrized. The convergence IN PROBADICITY can be formulated for metric pares.