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genus expansion for Covariance
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genus expansion for Covariance
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The spectral measure  of a
GUE random

*

matrix converges to the semicircular law
.

as its sire tends to  infinity .

*
convergence  in the following senses

:

→ almost  surely .

this
requires putting GUE random

Mafia ) into the sane

( product ) probability space .

→ in probability .

the topology of  weak convergence  can be

metrized
.

The  convergence IN PROBABILITY

can be formulated for metric  spaces .

Hint : Chebyshev 's  inequality Bad - Catelli llama
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