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* free central limit theorem
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* functional relation between R-transform and

moment - generating function.
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3.1 The Cauchy transform 65

Im(G(x+ iy)) =
Z

R

Im
⇣ 1

x� t + iy

⌘
dn(t) =

Z

R

�y
(x� t)2 + y2 dn(t).

Thus
Z b

a
Im(G(x+ iy))dx =

Z

R

Z b

a

�y
(x� t)2 + y2 dxdn(t)

= �

Z

R

Z (b�t)/y

(a�t)/y

1
1+ x̃2 dx̃dn(t)

= �

Z

R


tan�1

⇣b� t
y

⌘
� tan�1

⇣a� t
y

⌘�
dn(t),

where we have let x̃ = (x� t)/y.
So let f (y, t) = tan�1((b� t)/y)� tan�1((a� t)/y) and

f (t) =

8
><

>:

0, t /2 [a,b]

p/2, t 2 {a,b}

p, t 2 (a,b)

.

Then limy!0+ f (y, t) = f (t), and, for all y > 0 and for all t, we have | f (y, t)|  p .
So by Lebesgue’s dominated convergence theorem

lim
y!0+

Z b

a
Im(G(x+ iy))dx = � lim

y!0+

Z

R

f (y, t)dn(t)

= �

Z

R

f (t)dn(t)

= �p(n((a,b)
�
+

1
2

n({a,b})).

This proves the first claim.
Now assume that Gn1 = Gn2 . This implies, by the formula just proved, that

n1((a,b)) = n2((a,b)) for all a and b which are atoms neither of n1 nor of n2. Since
there are only countably many atoms of n1 and n2, we can write any interval (a,b)
in the form (a,b) = [

•
n=1(a + en,b � en) for a decreasing sequence e ! 0+, such

that all a+ en and all b� en are atoms neither of n1 nor of n2. But then we get

n1((a,b)) = lim
en!0+

n1((a+ en,b� en)) = lim
en!0+

n2((a+ en,b� en)) = n2((a,b)).

This shows that n1 and n2 agree on all open intervals and thus are equal.

Example 7 (The semi-circle distribution).
As an example of Stieltjes inversion let us take a familiar example and calculate

its Cauchy transform using a generating function and then using only the Cauchy
transform find the density by using Stieltjes inversion. The density of the semi-circle
law n := µs is given by

mm



66 3 Free Harmonic Analysis

dn(t) =

p

4� t2

2p
dt on [�2,2];

and the moments are given by

mn =
Z 2

�2
tndn(t) =

(
0, n odd
Cn/2, n even

,

where the Cn’s are the Catalan numbers:

Cn =
1

n+1

✓
2n
n

◆
.

Now let M(z) be the moment-generating function

M(z) = 1+C1z2 +C2z4 + · · ·

then
M(z)2 = Â

m,n�0
CmCnz2(m+n) = Â

k�0

�
Â

m+n=k
CmCn

�
z2k.

Now we saw in equation (2.5) that Âm+n=k CmCn = Ck+1, so

M(z)2 = Â
k�0

Ck+1z2k =
1
z2 Â

k�0
Ck+1z2(k+1)

and therefore

z2M(z)2 = M(z)�1 or M(z) = 1+ z2M(z)2.

By replacing M(z) by z�1G(1/z) we get that G satisfies the quadratic equation
zG(z) = 1+G(z)2. Solving this we find that

G(z) =
z±

p

z2 �4
2

.

We use the branch of
p

z2 �4 defined before Exercise 2, however we must choose
the sign in front of the square root. By Lemma 3, we require that limy!• iyG(iy) = 1.
Note that for y > 0 we have that, using our definition,

p
(iy)2 �4 = i

p
y2 +4. Thus

lim
y!•

(iy)
iy�

p
(iy)2 �4
2

= 1

and

lim
y!•

(iy)
iy+

p
(iy)2 �4
2

= •.

Hence
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G(z) =
z�

p

z2 �4
2

.

Of course, this agrees with the result in Exercise 5.
Returning to the equation zG(z) = 1 + G(z)2 we see that z = G(z)+ 1/G(z), so

K(z) = z + 1/z and thus R(z) = z i.e. all cumulants of the semi-circle law are 0
except k2, which equals 1, something we observed already in Exercise 2.9.

Now let us apply Stieltjes inversion to G(z). We have

Im
✓q

(x+ iy)2 �4
◆

=
��(x+ iy)2

�4
��1/2 sin((q1 +q2)/2)

lim
y!0+

Im
✓q

(x+ iy)2 �4
◆

=

(
|x2

�4|
1/2

·0 = 0, |x| > 2
|x2

�4|
1/2

·1 =
p

4� x2, |x|  2

and thus

lim
y!0+

Im(G(x+ iy)) = lim
y!0+

Im

 
x+ iy�

p
(x+ iy)2 �4
2

!

=

8
<

:

0, |x| > 2
�

p

4� x2

2
, |x|  2

.

Therefore

� lim
y!0+

1
p

Im(G(x+ iy)) =

8
<

:

0, |x| > 2
p

4� x2

2p
, |x|  2

.

Hence we recover our original density.

If G is the Cauchy transform of a probability measure we cannot in general expect
G(z) to converge as z converges to a 2R. It might be that |G(z)| ! • as z ! a or that
G behaves as if it has an essential singularity at a. However (z�a)G(z) always has a
limit as z ! a if we take a non-tangential limit. Let us recall the definition. Suppose
f : C+

!C and a 2R, we say lim^z!a f (z) = b if for every q > 0, limz!a f (z) = b
when we restrict z to be in the cone {x+ iy | y > 0 and |x�a| < qy} ⇢ C

+.

Proposition 8. Suppose n is a probability measure on R with Cauchy transform G.
For all a 2 R we have lim

^z!a
(z�a)G(z) = n({a}).

Proof: Let q > 0 be given. If z = x+ iy and |x�a| < qy, then for t 2 R we have

����
z�a
z� t

����
2
=

(x�a)2 + y2

(x� t)2 + y2 =
1+( x�a

y )2

1+( x�t
y )2  1+

⇣x�a
y

⌘2
< 1+q 2.

convergence is

uniform over X in

a compact subset of IR
.
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