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3.1 The Cauchy transform

Definition 1. Let C* = {z € C | Im(z) > 0} denote the complex upper half-plane,
and C~ = {z | Im(z) < 0} denote the lower half-plane. Let v be a probability mea-
sure on R and for z ¢ R let

G(z) = /R L v

R=1
G is the Cauchy transform of the measure V.

Let us briefly check that the integral converges to an analytic function on C*.

Lemma 2. G is an analytic function on C* with range contained in C~.

Lemma 3. Let G be the Cauchy transform of a probability measure v. Then:

limiyG(iy)=1 and sup y|G(x+iy)|=1.

y=re y>0,xeR

Theorem 6. Suppose Vv is a probability measure on R and G is its Cauchy transform.
For a < b we have

b
_yllr(% % ; Im(G(x+iy))dx=v((a,b))+ %v({a,b}).

If vi and v, are probability measures with Gy, = Gy,, then Vi = V,.
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Im(G(x+iy)):/le(x_tlﬁy)dv(z):/R(x_l_)ifﬂzdv(t).

/a " Im(Glx-+iy))dx = / / b%dxdv(t)
/ /<bt)t/>y/y lix i)
= 7/]R {tan’l (bT_t) —tan"! (%ﬂ)} av(t),

where we have let ¥ = (x —1)/y.

~ v el N . —17rsa NN o —17ss BV

Thus

In the next two exercises we need to choose a branch of v/z2 —4 for z in the
upper half-plane, C*. We write z> —4 = (z — 2)(z+ 2) and define each of /z—2
and v/z+2 on C*. For z € C*, let 0; be the angle between the x-axis and the line
joining z to 2; and 6, the angle between the x-axis and the line joining z to —2. See

Fig. 3.1. Then 7 — 2 = |z —2|¢'® and 7+ 2 = |z +2[¢'® and so we define /72 —4 to
be |Z2 —4|1/2€i(61+62)/2.

Exercise

< 7 1s theaggument

u2—|—v}/—u

20~

&—0t T g0t
This shows that v; and v, agree on all open intervals and thus are equal. L]

Example 7 (The semi-circle distribution).

As an example of Stieltjes inversion let us take a familiar example and calculate
its Cauchy transform using a generating function and then using only the Cauchy
transform find the density by using Stieltjes inversion. The density of the semi-circle
law v := L is given by
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dv(t) =

and the moments are given by

0, n odd
Cpj2, neven ’

e Catalan numbers:

Now let M(z) be the moment-generating function

M(zx) = 14+Ci22 +Cozt + -

then
M= ¥ GG =Y (¥ CuC).

m;n>0 k>0 m+n=k
Now we saw in equation (2.5) that ), ,—x CnCy = Cy41, SO

1
M(Z)2 = Z Ck+122k = Z Z C'k+122(k+1)
k>0 k>0

and therefore

PM(2)?> =M(z)—1 or M(z) = 14+22M(z)%.

By replacing M(z) by z7'G(1/z) we get that G satisfies the quadratic equation
2G(z) = 1+ G(z)?. Solving this we find that

_zEVZ2—4

G(2) 5

We use the branch of v/z2 — 4 defined before Exercise 2, however we must choose
the sign in front of the square root. By Lemma 3, we require that limy_,., iyG(iy) = 1.

Note that for y > 0 we have that, using our definition, \/(iy)? — 4 = i\/y2 + 4. Thus

. _ . 2_4
lim(,’y)ly— v (iy) -1
y—reo 2
and
v S —
1@(@)% — oo,
y {==]

Hence
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z—V2—4
—_—
Of course, this agrees with the result in Exercise 5.

Returning to the equation zG(z) = 1+ G(z)? we see that z = G(z) +1/G(z), so
K(z) = z+ 1/z and thus R(z) = z i.e. all cumulants of the semi-circle law are 0
except k», which equals 1, something we observed already in Exercise 2.9.

Now let us apply Stieltjes inversion to G(z). We have

G(z)=

Im( (x+iy)2—4) = |+ iy)2 — 4] sin((61 + 6:)/2)

Conversen e

) - {00
im Im x+iy)?2—4) = .
y—0+ Yy -4l 1=Va—x2, |x|<2 uw_/ﬁ.,,..,

Ove

A Compeh suloat

and thus
. . . x+iy—/(x+iy)? —4
lim Im(G(x+ = lim Im
Jim, Tm(G(x iv)) Jim, ( 5
0, |x| >2
=93 —/4—x2 .
Ve | <2
2
Therefore
1 07 ‘x| > 2
— lim —Im(G(x+1iy)) = — 2 .
JSim, (Gx+iy)) =4 Va 2 <2

2

Hence we recover our original density.

If G is the Cauchy transform of a probability measure we cannot in general expect
G(z) to converge as z converges to a € R. It might be that |G(z)| — oo as z — a or that
G behaves as if it has an essential singularity at a. However (z —a)G(z) always has a
limit as z — a if we take a non-tangential limit. Let us recall the definition. Suppose
f:C" — CandaeR, wesay limy,, f(z) = b if for every 8 > 0, lim,_,, f(z) = b
when we restrict z to be in the cone {x+iy|y >0 and [x—a| < 8y} C C*.

Proposition 8. Suppose v is a probability measure on R with Cauchy transform G.
For all a € R we have <Ilim (z—a)G(z) = v({a}).
Z—a

Proof: Let 6 > 0 be given. If z=x+ iy and |x — a| < Oy, then for r € R we have

Z—a

2 )22 1+(Jr;f4)2 _\2
bea) +y n’_,)z SH(%) <1462

=t (=02t 14 (2

a3
X ia

of R
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Of course, this agrees with the result in Exercise 5.

Returning to the equation zG(z) = 1+ G(z)? we see that z = G(z) +1/G(z), so
K(z) = z+ 1/z and thus R(z) = z i.e. all cumulants of the semi-circle law are 0
except k», which equals 1, something we observed already in Exercise 2.9.

Now let us apply Stieltjes inversion to G(z). We have

G(z) =

Im( (x+iy)2—4) = |+ iy)2 — 4] sin((61 + 6:)/2)

I I ( ( +i )2 4> |X2*4‘1/2-0=O7 |X‘ >2
m Im XT1 — =
y—0t Y 2 =42 1=Vv4a—x2, |x|<2

and thus

1im+lm(G(x+iy)) = lim Im

(eriy\/m)
2

y—=0 y—0F
0, |x| >2
= 7\/4?’ < .
Therefore
o 0, |x| >2
_)VE%L EIm(G(x—Hy)) = \/4_7)627 <2 .

2
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