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Candy transform
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where we have let x̃ = (x� t)/y.
So let f (y, t) = tan�1((b� t)/y)� tan�1((a� t)/y) and
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Then limy!0+ f (y, t) = f (t), and, for all y > 0 and for all t, we have | f (y, t)|  p .
So by Lebesgue’s dominated convergence theorem
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This proves the first claim.
Now assume that Gn1 = Gn2 . This implies, by the formula just proved, that

n1((a,b)) = n2((a,b)) for all a and b which are atoms neither of n1 nor of n2. Since
there are only countably many atoms of n1 and n2, we can write any interval (a,b)
in the form (a,b) = [

•
n=1(a + en,b � en) for a decreasing sequence e ! 0+, such

that all a+ en and all b� en are atoms neither of n1 nor of n2. But then we get

n1((a,b)) = lim
en!0+

n1((a+ en,b� en)) = lim
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n2((a+ en,b� en)) = n2((a,b)).

This shows that n1 and n2 agree on all open intervals and thus are equal.

Example 7 (The semi-circle distribution).
As an example of Stieltjes inversion let us take a familiar example and calculate

its Cauchy transform using a generating function and then using only the Cauchy
transform find the density by using Stieltjes inversion. The density of the semi-circle
law n := µs is given by

MT
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Of course, this agrees with the result in Exercise 5.
Returning to the equation zG(z) = 1 + G(z)2 we see that z = G(z)+ 1/G(z), so

K(z) = z + 1/z and thus R(z) = z i.e. all cumulants of the semi-circle law are 0
except k2, which equals 1, something we observed already in Exercise 2.9.

Now let us apply Stieltjes inversion to G(z). We have
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Hence we recover our original density.

If G is the Cauchy transform of a probability measure we cannot in general expect
G(z) to converge as z converges to a 2R. It might be that |G(z)| ! • as z ! a or that
G behaves as if it has an essential singularity at a. However (z�a)G(z) always has a
limit as z ! a if we take a non-tangential limit. Let us recall the definition. Suppose
f : C+

!C and a 2R, we say lim^z!a f (z) = b if for every q > 0, limz!a f (z) = b
when we restrict z to be in the cone {x+ iy | y > 0 and |x�a| < qy} ⇢ C

+.

Proposition 8. Suppose n is a probability measure on R with Cauchy transform G.
For all a 2 R we have lim
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