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Non—hermitian random matrices and operators

Selfadjoint operators on a Hilbert space and hermitian random
matrices are well understood.

Non-selfadjoint operators and non—hermitian random matrices
have wild properties.
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Examples of problems

Problems concerning non—hermitian random matrices:

Piotr évﬂady Eigenvalues of non-hermitian matrices



Introduction
Non—hermitian random matrices and operators
Examples of problems
Solution: Brown spectral measure

Examples of problems

Problems concerning non—hermitian random matrices:

@ find the distribution of eigenvalues
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Examples of problems

Problems concerning non—hermitian random matrices:

@ find the distribution of eigenvalues

-

Problems concerning non—selfadjoint operators on a Hilbert space:

A\
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Examples of problems

Problems concerning non—hermitian random matrices:

@ find the distribution of eigenvalues

-

Problems concerning non—selfadjoint operators on a Hilbert space:

@ invariant subspace conjecture: is true that for every bounded
operator X on a Hilbert space 'H there exists a nontrivial
closed invariant subspace K C H?

A\
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Introduction
Non—hermitian random matrices and operators
Examples of problems
Solution: Brown spectral measure

Examples of problems

Problems concerning non—hermitian random matrices:

@ find the distribution of eigenvalues

-

Problems concerning non—selfadjoint operators on a Hilbert space:

@ invariant subspace conjecture: is true that for every bounded
operator X on a Hilbert space 'H there exists a nontrivial
closed invariant subspace K C H?

@ can we have some version of the spectral theorem?

A\

Piotr Sniady Eigenvalues of non-hermitian matrices



Introduction
Non—hermitian random matrices and operators
Examples of problems
Solution: Brown spectral measure

Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.

We will extend the notion of the distribution of eigenvalues of a
random matrix to some operators on Hilbert spaces. This
extension is called Brown spectral measure.
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.

We will extend the notion of the distribution of eigenvalues of a
random matrix to some operators on Hilbert spaces. This
extension is called Brown spectral measure.

Our goal:

@ infinite dimensional operators can help us understand random
matrices;
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.

We will extend the notion of the distribution of eigenvalues of a
random matrix to some operators on Hilbert spaces. This
extension is called Brown spectral measure.

Our goal:

@ infinite dimensional operators can help us understand random
matrices;

@ random matrices can help us understand infinite dimensional
operators;
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n random matrices and operators
problems

Solution: Brown spectral measure

Outline

@ Brown spectral measure
© Random regularization of spectral measure
© Invariant subspaces in /I; factors

@ Final remarks
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Outline

@ Brown spectral measure
@ Common setup for random matrices and operators
@ Fuglede—Kadison determinant A
@ Brown measure
@ Discontinuity of spectral measure
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Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brown measure

Brown spectral measure

Discontinuity of spectral measure

Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, //; factor)
A is a x-algebra of bounded operators on H equipped with a linear
functional ¢ : A — C, called trace or expectation, such that
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Brown measure
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, //; factor)
A is a x-algebra of bounded operators on H equipped with a linear
functional ¢ : A — C, called trace or expectation, such that

¢(1) =1,
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Brown measure

Discontinuity of spectral measure

Brown spectral measure

Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, //; factor)
A is a x-algebra of bounded operators on H equipped with a linear
functional ¢ : A — C, called trace or expectation, such that

¢(1) =1,

6(v) = 6(yx),  for every x,y € A,
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, //; factor)
A is a x-algebra of bounded operators on H equipped with a linear
functional ¢ : A — C, called trace or expectation, such that

¢(1) =1,

bxy) = o(yx),  for every x,y € A,
d(xx*) >0, for every x € A.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, //; factor)
A is a x-algebra of bounded operators on H equipped with a linear
functional ¢ : A — C, called trace or expectation, such that

¢(1) =1,

bxy) = o(yx),  for every x,y € A,
d(xx*) >0, for every x € A.

Elements of A will be called hon—commutative random variables.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Example: Random matrices

For fixed N € N and a probability space (€2, B, P) let A be an
algebra of N x N random matrices.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Example: Random matrices

Example

For fixed N € N and a probability space (€2, B, P) let A be an
algebra of N x N random matrices.

This algebra is equipped with a normalized trace

tr(A) = %E Tr A,

where Tr denotes the usual trace.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Example: Random matrices

Example

For fixed N € N and a probability space (€2, B, P) let A be an
algebra of N x N random matrices.

This algebra is equipped with a normalized trace

tr(A) = %E Tr A,

where Tr denotes the usual trace.

Therefore random matrices fit into the framework of finite von
Neumann algebras.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brown measure

Brown spectral measure

Discontinuity of spectral measure

Fuglede—Kadison determinant A

If Ais a non-random N x N matrix then a “normalized

determinant” A(A) := {/|det A| fulfills
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Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brown measure

Brown spectral measure

Discontinuity of spectral measure

Fuglede—Kadison determinant A

If Ais a non-random N x N matrix then a “normalized

determinant” A(A) := {/|det A| fulfills

A(A) = V| det Al =

Piotr évﬂady Eigenvalues of non-hermitian matrices



Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brown measure

Brown spectral measure

Discontinuity of spectral measure

Fuglede—Kadison determinant A

If Ais a non-random N x N matrix then a “normalized

determinant” A(A) := {/|det A| fulfills

1
A(A) = V| det Al = exp (N Trlog \/A*A) =

Piotr évﬂady Eigenvalues of non-hermitian matrices



Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brown measure

Brown spectral measure

Discontinuity of spectral measure

Fuglede—Kadison determinant A

If Ais a non-random N x N matrix then a “normalized

determinant” A(A) := {/|det A| fulfills

1
A(A) = V/|det Al = exp (N Trlog \/A*A> = exp [trlog \/A*A].
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Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brown measure

Brown spectral measure

Discontinuity of spectral measure

Fuglede—Kadison determinant A

If Ais a non-random N x N matrix then a “normalized

determinant” A(A) := {/|det A| fulfills

A(A) = = exp [trlog \/M]
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Fuglede—Kadison determinant A

If Ais a non-random N x N matrix then a “normalized
determinant” A(A) := {/|det A| fulfills

A(A) = = exp [trlog \/M]

Inspired by this, for any non—commutative random variable x we
define its Fuglede—Kadison determinant

8(x) = exp | ol1og Vi)
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of a random matrix

Let A be a N x N random matrix. Let Aj(w),..., Any(w) be the
eigenvalues of A(w).
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of a random matrix

Let A be a N x N random matrix. Let Aj(w),..., Any(w) be the
eigenvalues of A(w).

Empirical eigenvalues distribution of A is a random probability
measure on C

C On(w) T O(w)
,uA(w) - N .
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of a random matrix

Let A be a N x N random matrix. Let Aj(w),..., Any(w) be the
eigenvalues of A(w).

Empirical eigenvalues distribution of A is a random probability
measure on C

C On(w) T O(w)
,uA(w) - N .

Brown measure or mean eigenvalues distribution of A is a
probability measure pa on C

My(w) -+ Op(w)
N

pa=E
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of a matrix, alternative approach

If Ais a non—random N x N matrix then we consider its
“characteristic polynomial”

z— A(A-2)
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of a matrix, alternative approach

If Ais a non—random N x N matrix then we consider its
“characteristic polynomial”

z+— A(A—2z) = V/|det(A - 2)|. (1)
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of a matrix, alternative approach

If Ais a non—random N x N matrix then we consider its
“characteristic polynomial”

z+— A(A—2z) = V/|det(A - 2)|. (1)

Distribution of eigenvalues of A is given by

1
A = Q—Lap/acian of logarithm of (1) =
i

% ((85?:2)2 * (aszz)2> log Alx = 2).
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of operators

Inspired by this, for any element x we define its Brown measure:

1 o + o log A(x — z)
= 2x \(aR2)2 T (932)2) B2V 2
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of operators

Inspired by this, for any element x we define its Brown measure:
1 02 92

x = — log A(x — z).

e = on ((83‘%2)2 + (asz)2> og Alx —2)

This Schwartz distribution is in fact a probability measure on the
spectrum of x.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Brown measure of operators

Inspired by this, for any element x we define its Brown measure:
1 02 92

x = — log A(x — z).

e = on ((85)‘%2)2 + (asz)2> og Alx —2)

This Schwartz distribution is in fact a probability measure on the
spectrum of x.

Speaking informally, Brown measure tells us “how many”
eigenvalues of x belong to a given subset of C.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Bro measure

Discontinuity of spectral measure

Brown spectral measure

Convergence of x—moments

How to relate the world of random matrices and the world of
operators?
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Convergence of x—moments

How to relate the world of random matrices and the world of
operators?

Definition

Let a sequence (A(N)) of random matrices and a non—commutative
random variable x be given. AM) is an N x N random matrix.

Piotr Sniady Eigenvalues of non-hermitian matrices



Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Convergence of x—moments

How to relate the world of random matrices and the world of
operators?

Definition

Let a sequence (A(N)) of random matrices and a non—commutative
random variable x be given. AM) is an N x N random matrix.

We say that the sequence (A(M)) converges to x in x~moments
almost surely
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Convergence of x—moments

How to relate the world of random matrices and the world of
operators?

Definition

Let a sequence (A(N)) of random matrices and a non—commutative
random variable x be given. AM) is an N x N random matrix.
We say that the sequence (A(M)) converges to x in x~moments
almost surely if for every n € N and s,...,s, € {1, *} we have
that

lim try [(A(N))sl e (A(N))sn] = H(x - x)

N—oo

holds almost surely.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Is Brown measure continuous?

Let AN) be a sequence of matrices which converges in x—moments
to a non—commutative random variable x.

Is it true that the eigenvalues distribution of AN) converges to the
Brown measure of x?
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Is Brown measure continuous?

Let AN) be a sequence of matrices which converges in x—moments
to a non—commutative random variable x.

Is it true that the eigenvalues distribution of AN) converges to the
Brown measure of x?

This would have nice implications!
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Is Brown measure continuous?

Let AN) be a sequence of matrices which converges in x—moments
to a non—commutative random variable x.

Is it true that the eigenvalues distribution of AN) converges to the
Brown measure of x?

This would have nice implications!

Unfortunately, this conjecture is false! Why? because
non-hermitian matrices have wild properties!
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Common setup for random matrices and operators
Fuglede—Kadison determinant A
Brow measure

Discontinuity of spectral measure

Brown spectral measure

Discontinuity of Brown measure: Counterexample

—_
o

o O
o O

Let =(V)

Il
o
=

be N x N nilpotent matrix.

= O
o O
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Common setup for random matrices and operators

Brown spectral measure 5 p
P e—Kadison determinant A

Discontinuity of spectral measure

Discontinuity of Brown measure: Counterexample

0 0 00
1 0 0 0
Let=M =10 1 be N x N nilpotent matrix.

.. .. 00
0 -~ 0 1 0

Brown measure pi=v) = dg is the Dirac measure in 0.

Piotr évﬂady Eigenvalues of non-hermitian matrices



Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Discontinuity of Brown measure: Counterexample

0 0 00
1 0 0 0
Let=M =10 1 be N x N nilpotent matrix.

N
0 -~ 0 1 0

Brown measure pi=v) = dg is the Dirac measure in 0.

The sequence (Z(V)) converges in +~moments to a certain unitary
operator u (called Haar unitary).
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Discontinuity of Brown measure: Counterexample

0 0 00
1 0 0 0
Let=M =10 1 be N x N nilpotent matrix.

N
0 -~ 0 1 0

Brown measure pi=v) = dg is the Dirac measure in 0.

The sequence (Z(V)) converges in +~moments to a certain unitary
operator u (called Haar unitary). Its Brown measure (i, is the
uniform measure on the unit circle {z € C: |z| = 1}.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Discontinuity of Brown measure: Counterexample

0 0 00
1 0 0 0
Let=M =10 1 be N x N nilpotent matrix.
. ... 00
0 - 0 1 0]

Brown measure pi=v) = dg is the Dirac measure in 0.

The sequence (Z(V)) converges in +~moments to a certain unitary
operator u (called Haar unitary). Its Brown measure (i, is the
uniform measure on the unit circle {z € C: |z| = 1}.

Therefore Brown measures pi=v) do not converge to the Brown
measure of p,,.
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Common setup for random matrices and operators
ede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede—Kadison determinant is not continuous.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede—Kadison determinant is not continuous.
Why is the Fuglede—Kadison determinant not continuous?

A(A) = exp 108 VAA)
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede—Kadison determinant is not continuous.
Why is the Fuglede—Kadison determinant not continuous?

A(A) = exp 108 VAA)

Because log is not bounded from below near 0. Even only one
small eigenvalue of A*A can change the determinant dramatically.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede—Kadison determinant is not continuous.
Why is the Fuglede—Kadison determinant not continuous?

A(A) = exp 108 VAA)

Because log is not bounded from below near 0. Even only one
small eigenvalue of A*A can change the determinant dramatically.
Therefore: we do not like small eigenvalues of A*A.
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Common setup for random matrices and operators
ede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

How to repair our program? Random regularization

Is there any hope to repair our program?
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Common setup for random matrices and operators
ede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

How to repair our program? Random regularization

Is there any hope to repair our program?

Maybe “bad” matrices are very unusual and usually Brown
measure is continuous?
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Common setup for random matrices and operators
Brown spectral measure 5 p

Fuglede—Kadison determinant A
Brown measure

Discontinuity of spectral measure

How to repair our program? Random regularization

Is there any hope to repair our program?

Maybe “bad” matrices are very unusual and usually Brown
measure is continuous?

Our strategy: find a small random correction which will change
any bad sequence of matrices into a good one. For the new
sequence the Brown measure will be continuous.
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Common setup for random matrices and operators
Fuglede—Kadison determinant A

Brown measure

Discontinuity of spectral measure

Brown spectral measure

How to repair our program? Random regularization

Is there any hope to repair our program?

Maybe “bad” matrices are very unusual and usually Brown
measure is continuous?

Our strategy: find a small random correction which will change
any bad sequence of matrices into a good one. For the new
sequence the Brown measure will be continuous. It is the method
of random regularization of Brown measure.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Outline

© Random regularization of spectral measure
@ Main theorem
@ Other random corrections (interesting for random matrix community
@ Proof of the main theorem (stochastic 1t6 integration, sketch)
@ Proof of the main theorem (stochastic It integration, complete)
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

The correction: Gaussian random matrices

We say that an N x N random matrix G(V) is a standard Gaussian
random matrix if

(N) all
(%Gij )19;/9\/7 (“Gij )1§i,j§N
are independent Gaussian variables with mean zero and variance
1
2N-
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Main theorem: regularization of Brown measure

Theorem (Piotr Sniady, 2001)

Let AN) be a sequence of random matrices which converges in
*—moments to x almost surely.




Main theorem: regularization of Brown measure

Theorem (Piotr Sniady, 2001)

Let AN) be a sequence of random matrices which converges in
*—moments to x almost surely.

There exists a sequence (ty) of numbers which converges to 0
such that the corrected sequence

AN — AN e GN)

fulfills:




Main theorem: regularization of Brown measure

Theorem (Piotr Sniady, 2001)

Let AN) be a sequence of random matrices which converges in
*—moments to x almost surely.

There exists a sequence (ty) of numbers which converges to 0
such that the corrected sequence

AN — AN e GN)

fulfills:
o

Jim AN — AN =0

holds almost surely ("the correction is small”),




Main theorem: regularization of Brown measure

Theorem (Piotr Sniady, 2001)

Let AN) be a sequence of random matrices which converges in
*—moments to x almost surely.

There exists a sequence (ty) of numbers which converges to 0
such that the corrected sequence

AN — AN e GN)

fulfills:

o
A — AW — o

lim
N—oo
holds almost surely ("the correction is small”),

o empirical eigenvalues distributions of matrices A'N) converge
to the Brown measure of x almost surely




Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Regularization by Cauchy matrix

This result was inspired by the work of Uffe Haagerup who
considered not the Gaussian, but the Cauchy correction.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Regularization by Cauchy matrix

This result was inspired by the work of Uffe Haagerup who
considered not the Gaussian, but the Cauchy correction. Matrix
Cauchy distribution is an analogue of the usual Cauchy
distribution. It is the distribution of GH™1, where G, H are
independent standard Gaussian random matrices.

Piotr évﬂady Eigenvalues of non-hermitian matrices



Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Regularization by Cauchy matrix

This result was inspired by the work of Uffe Haagerup who
considered not the Gaussian, but the Cauchy correction. Matrix
Cauchy distribution is an analogue of the usual Cauchy
distribution. It is the distribution of GH™!, where G, H are
independent standard Gaussian random matrices.

Disadvantage of this correction: Cauchy distribution has a very
heavy tail, for example none of its moments is finite.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Is Brown measure usually continuous?

Let x € A be some element and let (A(N)) be the most natural
sequence of random matrices such that AN) converges to x in
x—moments. Then the sequence of empirical eigenvalues
distributions [, converges to [iy.
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Main theorem
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Proof of the main theorem (sketch)
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Random regularization of spectral measure

Is Brown measure usually continuous?

Let x € A be some element and let (A(N)) be the most natural
sequence of random matrices such that AN) converges to x in
x—moments. Then the sequence of empirical eigenvalues
distributions [, converges to [iy.

The key element of the above conjecture are the words the most
natural since nobody knows what exactly should it mean in our
context.

Nevertheless, this conjecture seems to be very important.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Regularization by Haar unitary?

Haar unitary matrix U(V) is a random matrix, the distribution of
which is the uniform (Haar) measure on the group of unitary
matrices.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Regularization by Haar unitary?

Haar unitary matrix U(V) is a random matrix, the distribution of
which is the uniform (Haar) measure on the group of unitary
matrices.

(N)

Suppose that AA"Y) converges to x in x—moments almost surely, let
UWN) be a sequence of independent Haar unitary matrices, let u be
a Haar unitary such that x and u are free. Is it true that for t > 0
we have HAN) 4 +y(N) — Wxttu? Is it true that AN vy — s &
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Random regularization of spectral measure

Regularization by Haar unitary?

Haar unitary matrix U(V) is a random matrix, the distribution of
which is the uniform (Haar) measure on the group of unitary
matrices.

(N)

Suppose that AA"Y) converges to x in x—moments almost surely, let
UWN) be a sequence of independent Haar unitary matrices, let u be
a Haar unitary such that x and u are free. Is it true that for t > 0
we have HAN) 4 +y(N) — Wxttu? Is it true that AN vy — s &

This conjecture would solve the long—standing problem about the
eigenvalues of AN YN,
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Matrix Brownian motion

We say that M(N)(t) is a matrix Brownian motion,

M(e) = (M(2),

(V) (V)
(M) (M)

are independent Brownian motions.

1<ij<N’ 1<ij<N
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Idea of the proof

1. We define a matrix—valued stochastic process

AN = AN M)

(N)
ty

Then AM) 1 /ty G(V) has the same distribution as A
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Random regularization of spectral measure

Idea of the proof

1. We define a matrix—valued stochastic process

AN = AN M)

(N)
ty

Then AM) 1 /ty G(V) has the same distribution as A

2. Brown measure is defined in terms of Fuglede—Kadison
determinant. It is enough to construct a sequence of (ty) such that

. N
Jim A(AL) = A(x)

holds almost surely.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Idea of the proof (continued)

3. We say that A\; < --- < Ay are the singular values of a matrix A
if A1,..., Ay are eigenvalues of vV A*A.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Idea of the proof (continued)

3. We say that A\; < --- < Ay are the singular values of a matrix A

if A1,..., Ay are eigenvalues of vV A*A.
The Fuglede—Kadison determinant of A can be expressed in terms

of the singular values:

log A1 + -+ +log Ay

log A(A) = 5
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Proof of the main theorem (sketch)
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Random regularization of spectral measure

Idea of the proof (continued)

3. We say that A\; < --- < Ay are the singular values of a matrix A
if A1,..., Ay are eigenvalues of vV A*A.

The Fuglede—Kadison determinant of A can be expressed in terms
of the singular values:

_ log A1+ -+ log Ay
= m _

log A(A)

Let A\i(t) <--- < An(t) be singular values of AgN). Our goal is to
show that small singular values of AgN) cannot be too small.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Idea of the proof (continued)

4. Singular values fulfill the following stochastic differential
equation (in the 1t6 sense):

dt 1 A2 4+ N2
di(t) = R(dM;; — |1 - — — J_ s
(£) = 3(dMa) + 53 Nt 2 NOZ - X)

where M is a standard matrix Brownian motion.
The above equation allows us to show bottom bounds for singular
values.
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Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Matrix Brownian motion

We say that M(N)(t) is a matrix Brownian motion,

M(e) = (M(2),

(V) (V)
(M) (M)

are independent Brownian motions.

1<ij<N’ 1<ij<N
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Proof of the main theorem (complete)

Random regularization of spectral measure

Matrix Brownian motion

We say that M(N)(t) is a matrix Brownian motion,

M(e) = (M(2),

(3mi)

are independent Brownian motions.

N
(éRI\/I,S- ))1§i,j§N’ 1<ij<N

We define a matrix—valued stochastic process
AN = AN 4 V),

Then AM) /Ty G(V) has the same distribution as Agll\y).
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Singular values

We say that A\; < --- < Ay are the singular values of a matrix A if
A1, ..., Ay are eigenvalues of VA*A.
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Singular values

We say that A\; < --- < Ay are the singular values of a matrix A if
A1, ..., Ay are eigenvalues of VA*A.

The Fuglede—Kadison determinant of A can be expressed in terms
of the singular values:

log A1 + -+ +log Ay
N :

log A(A) =
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Singular values

We say that A\; < --- < Ay are the singular values of a matrix A if
A1, ..., Ay are eigenvalues of VA*A.

The Fuglede—Kadison determinant of A can be expressed in terms
of the singular values:

log A1 + -+ +log Ay

log A(A) = 5

What can we say about the singular values of AgN) which will be
denoted by A\1(t) < --- < Apn(t)?
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Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Eigenvalues of a perturbed matrix

If D is a diagonal matrix with eigenvalues v1,...,vy and AD is

any matrix then the eigenvalues v}, ..., vy of a matrix D + AD
are given by

AD:AD::

vi =vi+ ADj + 27’1_ B

3
> == 4 o(|aD))
i /

for small enough ||AD]|.
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Singular values of a perturbed matrix

Corollary

If F is a diagonal matrix with positive eigenvalues A1, ..., Ay, and
AF is any matrix then the singular values N}, ..., Xy of F + AF
are given by

(N)? = X2 + 2\ RAF; + 3 [AF;
J
N AF; + 200 R(AFAF;) + X |AF;?
+> 22— )2 ; + O(IAFF).
i P




Singular values of a perturbed matrix

Corollary

If F is a diagonal matrix with positive eigenvalues A1, ..., Ay, and
AF is any matrix then the singular values N}, ..., Xy of F + AF
are given by

(N)? = X2 + 2\ RAF; + 3 [AF;
J
N AF; + 200 R(AFAF;) + X |AF;?
+> 22— )2 ; + O(IAFF).
i P

We can always find unitaries U, V such that F = UAM v is
diagonal; then AF = U(At1at — At)V. Thus we get a relation
between the singular values of A; and A;ya:.



Main theorem

Other random corrections

Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of spectral measure

Stochastic differential equation for singular values

This gives a stochastic differential equation (in the 1t6 sense) for
A1(t), ..., An(t), the singular values of A;:

dt )\2 + /\2

IN() = R(AMy) + 50 (1 o Z oz ) @

where M is a standard matrix Brownian motion.
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Lemma

For each k € {1,2} let A(lk)(t), ce )\%()(t) be a solution to the
system of equations (2). If

Aty < AP (1) (3)

holds for all 1 < i < N and t = 0 then it holds true for all t > 0.
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Let to be the minimal value of t for which (3) is not true; for
example )\J(-l)(to) = )\J(-z)(to).
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Aty < AP (1) (3)

holds for all1 < i < N and t = 0 then it holds true for all t > 0.

Proof.
Let to be the minimal value of t for which (3) is not true; for
example AN (o) = AP (to). 1f AP () = AP (1) for all i then

!

(uniqueness of solutions) it follows that )\El)(t) = )\,(-2)(1‘) for every
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