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Piotr Śniady

University of Wroclaw
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Non–hermitian random matrices and operators

Selfadjoint operators on a Hilbert space and hermitian random
matrices are well understood.

Non–selfadjoint operators and non–hermitian random matrices
have wild properties.
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Examples of problems

Problem

Problems concerning non–hermitian random matrices:

find the distribution of eigenvalues
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find the distribution of eigenvalues
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Problems concerning non–selfadjoint operators on a Hilbert space:
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Examples of problems

Problem

Problems concerning non–hermitian random matrices:

find the distribution of eigenvalues

Problem

Problems concerning non–selfadjoint operators on a Hilbert space:

invariant subspace conjecture: is true that for every bounded
operator X on a Hilbert space H there exists a nontrivial
closed invariant subspace K ⊂ H?
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Examples of problems

Problem

Problems concerning non–hermitian random matrices:

find the distribution of eigenvalues

Problem

Problems concerning non–selfadjoint operators on a Hilbert space:

invariant subspace conjecture: is true that for every bounded
operator X on a Hilbert space H there exists a nontrivial
closed invariant subspace K ⊂ H?

can we have some version of the spectral theorem?
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.

We will extend the notion of the distribution of eigenvalues of a
random matrix to some operators on Hilbert spaces. This
extension is called Brown spectral measure.
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.

We will extend the notion of the distribution of eigenvalues of a
random matrix to some operators on Hilbert spaces. This
extension is called Brown spectral measure.

Our goal:

infinite dimensional operators can help us understand random
matrices;
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Solution: Brown spectral measure

Idea of a (partial) solution: establish link between operators on
Hilbert spaces and random matrices.

We will extend the notion of the distribution of eigenvalues of a
random matrix to some operators on Hilbert spaces. This
extension is called Brown spectral measure.

Our goal:

infinite dimensional operators can help us understand random
matrices;

random matrices can help us understand infinite dimensional
operators;
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, II1 factor)
A is a ⋆-algebra of bounded operators on H equipped with a linear
functional φ : A → C, called trace or expectation, such that
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, II1 factor)
A is a ⋆-algebra of bounded operators on H equipped with a linear
functional φ : A → C, called trace or expectation, such that

φ(1) = 1,

Piotr Śniady Eigenvalues of non-hermitian matrices



Introduction
Brown spectral measure

Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Common setup for random matrices and operators
Fuglede–Kadison determinant ∆
Brown measure
Discontinuity of spectral measure

Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, II1 factor)
A is a ⋆-algebra of bounded operators on H equipped with a linear
functional φ : A → C, called trace or expectation, such that

φ(1) = 1,

φ(xy) = φ(yx), for every x , y ∈ A,
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, II1 factor)
A is a ⋆-algebra of bounded operators on H equipped with a linear
functional φ : A → C, called trace or expectation, such that

φ(1) = 1,

φ(xy) = φ(yx), for every x , y ∈ A,

φ(xx⋆) ≥ 0, for every x ∈ A.
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Common setup for random matrices and operators

We will not study general operators on a Hilbert space, but only
elements of finite von Neumann algebras.

Informally speaking, a finite von Neumann algebra (or, II1 factor)
A is a ⋆-algebra of bounded operators on H equipped with a linear
functional φ : A → C, called trace or expectation, such that

φ(1) = 1,

φ(xy) = φ(yx), for every x , y ∈ A,

φ(xx⋆) ≥ 0, for every x ∈ A.

Elements of A will be called non–commutative random variables.
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Example: Random matrices

Example

For fixed N ∈ N and a probability space (Ω,B, P) let A be an
algebra of N × N random matrices.
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Example: Random matrices

Example

For fixed N ∈ N and a probability space (Ω,B, P) let A be an
algebra of N × N random matrices.

This algebra is equipped with a normalized trace

tr(A) =
1

N
E Tr A,

where Tr denotes the usual trace.
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Example: Random matrices

Example

For fixed N ∈ N and a probability space (Ω,B, P) let A be an
algebra of N × N random matrices.

This algebra is equipped with a normalized trace

tr(A) =
1

N
E Tr A,

where Tr denotes the usual trace.

Therefore random matrices fit into the framework of finite von
Neumann algebras.
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Fuglede–Kadison determinant ∆

If A is a non–random N × N matrix then a “normalized
determinant” ∆(A) := N

√

| detA| fulfills
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Fuglede–Kadison determinant ∆

If A is a non–random N × N matrix then a “normalized
determinant” ∆(A) := N

√

| detA| fulfills

∆(A) = N
√

| det A| =
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Fuglede–Kadison determinant ∆

If A is a non–random N × N matrix then a “normalized
determinant” ∆(A) := N

√

| detA| fulfills

∆(A) = N
√

| det A| = exp

(

1

N
Tr log

√
A⋆A

)

=
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Fuglede–Kadison determinant ∆

If A is a non–random N × N matrix then a “normalized
determinant” ∆(A) := N

√

| detA| fulfills

∆(A) = N
√

| det A| = exp

(

1

N
Tr log

√
A⋆A

)

= exp

[

tr log
√

A⋆A

]

.
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If A is a non–random N × N matrix then a “normalized
determinant” ∆(A) := N

√

| detA| fulfills

∆(A) = = exp

[

tr log
√

A⋆A

]

.
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Fuglede–Kadison determinant ∆

If A is a non–random N × N matrix then a “normalized
determinant” ∆(A) := N

√

| detA| fulfills

∆(A) = = exp

[

tr log
√

A⋆A

]

.

Inspired by this, for any non–commutative random variable x we
define its Fuglede–Kadison determinant

∆(x) = exp

[

φ(log
√

x⋆x)

]

.
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Brown measure of a random matrix

Let A be a N × N random matrix. Let λ1(ω), . . . , λN(ω) be the
eigenvalues of A(ω).
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Brown measure of a random matrix

Let A be a N × N random matrix. Let λ1(ω), . . . , λN(ω) be the
eigenvalues of A(ω).
Empirical eigenvalues distribution of A is a random probability
measure on C

µA(ω) =
δλ1(ω) + · · · + δλN(ω)

N
.
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Brown measure of a random matrix

Let A be a N × N random matrix. Let λ1(ω), . . . , λN(ω) be the
eigenvalues of A(ω).
Empirical eigenvalues distribution of A is a random probability
measure on C

µA(ω) =
δλ1(ω) + · · · + δλN(ω)

N
.

Brown measure or mean eigenvalues distribution of A is a
probability measure µA on C

µA = E
δλ1(ω) + · · · + δλN(ω)

N
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Brown measure of a matrix, alternative approach

If A is a non–random N × N matrix then we consider its
“characteristic polynomial”

z 7→ ∆(A − z)
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Brown measure of a matrix, alternative approach

If A is a non–random N × N matrix then we consider its
“characteristic polynomial”

z 7→ ∆(A − z) = N
√

| det(A − z)|. (1)
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Brown measure of a matrix, alternative approach

If A is a non–random N × N matrix then we consider its
“characteristic polynomial”

z 7→ ∆(A − z) = N
√

| det(A − z)|. (1)

Exercise

Distribution of eigenvalues of A is given by

µA =
1

2π
Laplacian of logarithm of (1) =

1

2π

(

∂2

(∂ℜz)2
+

∂2

(∂ℑz)2

)

log ∆(x − z).
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Brown measure of operators

Inspired by this, for any element x we define its Brown measure:

µx =
1

2π

(

∂2

(∂ℜz)2
+

∂2

(∂ℑz)2

)

log ∆(x − z).
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Brown measure of operators

Inspired by this, for any element x we define its Brown measure:

µx =
1

2π

(

∂2

(∂ℜz)2
+

∂2

(∂ℑz)2

)

log ∆(x − z).

This Schwartz distribution is in fact a probability measure on the
spectrum of x .
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Brown measure of operators

Inspired by this, for any element x we define its Brown measure:

µx =
1

2π

(

∂2

(∂ℜz)2
+

∂2

(∂ℑz)2

)

log ∆(x − z).

This Schwartz distribution is in fact a probability measure on the
spectrum of x .

Speaking informally, Brown measure tells us “how many”
eigenvalues of x belong to a given subset of C.
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Convergence of ⋆–moments

How to relate the world of random matrices and the world of
operators?

Definition

Let a sequence (A(N)) of random matrices and a non–commutative
random variable x be given. A(N) is an N × N random matrix.
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Convergence of ⋆–moments

How to relate the world of random matrices and the world of
operators?

Definition

Let a sequence (A(N)) of random matrices and a non–commutative
random variable x be given. A(N) is an N × N random matrix.
We say that the sequence (A(N)) converges to x in ⋆–moments
almost surely
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Convergence of ⋆–moments

How to relate the world of random matrices and the world of
operators?

Definition

Let a sequence (A(N)) of random matrices and a non–commutative
random variable x be given. A(N) is an N × N random matrix.
We say that the sequence (A(N)) converges to x in ⋆–moments
almost surely if for every n ∈ N and s1, . . . , sn ∈ {1, ⋆} we have
that

lim
N→∞

trN
[(

A(N)
)s1 · · ·

(

A(N)
)sn

]

= φ(x s1 · · · x sn)

holds almost surely.
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Is Brown measure continuous?

Conjecture

Let A(N) be a sequence of matrices which converges in ⋆–moments
to a non–commutative random variable x.
Is it true that the eigenvalues distribution of A(N) converges to the
Brown measure of x?
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Is Brown measure continuous?

Conjecture

Let A(N) be a sequence of matrices which converges in ⋆–moments
to a non–commutative random variable x.
Is it true that the eigenvalues distribution of A(N) converges to the
Brown measure of x?

This would have nice implications!
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Is Brown measure continuous?

Conjecture

Let A(N) be a sequence of matrices which converges in ⋆–moments
to a non–commutative random variable x.
Is it true that the eigenvalues distribution of A(N) converges to the
Brown measure of x?

This would have nice implications!

Unfortunately, this conjecture is false! Why? because
non-hermitian matrices have wild properties!
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Discontinuity of Brown measure: Counterexample

Let Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















be N × N nilpotent matrix.
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Discontinuity of Brown measure: Counterexample

Let Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















be N × N nilpotent matrix.

Brown measure µΞ(N) = δ0 is the Dirac measure in 0.
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Discontinuity of Brown measure: Counterexample

Let Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















be N × N nilpotent matrix.

Brown measure µΞ(N) = δ0 is the Dirac measure in 0.

The sequence (Ξ(N)) converges in ⋆–moments to a certain unitary
operator u (called Haar unitary).
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Discontinuity of Brown measure: Counterexample

Let Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















be N × N nilpotent matrix.

Brown measure µΞ(N) = δ0 is the Dirac measure in 0.

The sequence (Ξ(N)) converges in ⋆–moments to a certain unitary
operator u (called Haar unitary). Its Brown measure µu is the
uniform measure on the unit circle {z ∈ C : |z | = 1}.
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Discontinuity of Brown measure: Counterexample

Let Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















be N × N nilpotent matrix.

Brown measure µΞ(N) = δ0 is the Dirac measure in 0.

The sequence (Ξ(N)) converges in ⋆–moments to a certain unitary
operator u (called Haar unitary). Its Brown measure µu is the
uniform measure on the unit circle {z ∈ C : |z | = 1}.
Therefore Brown measures µΞ(N) do not converge to the Brown
measure of µu.
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Why Brown measure is not continuous? Because the
Fuglede–Kadison determinant is not continuous.
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Common setup for random matrices and operators
Fuglede–Kadison determinant ∆
Brown measure
Discontinuity of spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede–Kadison determinant is not continuous.
Why is the Fuglede–Kadison determinant not continuous?

∆(A) = exp

[

φ(log
√

A⋆A)

]
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Common setup for random matrices and operators
Fuglede–Kadison determinant ∆
Brown measure
Discontinuity of spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede–Kadison determinant is not continuous.
Why is the Fuglede–Kadison determinant not continuous?

∆(A) = exp

[

φ(log
√

A⋆A)

]

Because log is not bounded from below near 0. Even only one
small eigenvalue of A⋆A can change the determinant dramatically.
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Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Common setup for random matrices and operators
Fuglede–Kadison determinant ∆
Brown measure
Discontinuity of spectral measure

Why is Brown measure not continuous?

Why Brown measure is not continuous? Because the
Fuglede–Kadison determinant is not continuous.
Why is the Fuglede–Kadison determinant not continuous?

∆(A) = exp

[

φ(log
√

A⋆A)

]

Because log is not bounded from below near 0. Even only one
small eigenvalue of A⋆A can change the determinant dramatically.
Therefore: we do not like small eigenvalues of A⋆A.
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Is there any hope to repair our program?
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Is there any hope to repair our program?

Maybe “bad” matrices are very unusual and usually Brown
measure is continuous?
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Fuglede–Kadison determinant ∆
Brown measure
Discontinuity of spectral measure

How to repair our program? Random regularization

Is there any hope to repair our program?

Maybe “bad” matrices are very unusual and usually Brown
measure is continuous?

Our strategy: find a small random correction which will change
any bad sequence of matrices into a good one. For the new
sequence the Brown measure will be continuous.
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Final remarks

Common setup for random matrices and operators
Fuglede–Kadison determinant ∆
Brown measure
Discontinuity of spectral measure

How to repair our program? Random regularization

Is there any hope to repair our program?

Maybe “bad” matrices are very unusual and usually Brown
measure is continuous?

Our strategy: find a small random correction which will change
any bad sequence of matrices into a good one. For the new
sequence the Brown measure will be continuous. It is the method
of random regularization of Brown measure.
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Outline

1 Brown spectral measure

2 Random regularization of spectral measure
Main theorem
Other random corrections (interesting for random matrix community)
Proof of the main theorem (stochastic Itô integration, sketch)
Proof of the main theorem (stochastic Itô integration, complete)

3 Invariant subspaces in II1 factors

4 Final remarks
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The correction: Gaussian random matrices

We say that an N × N random matrix G (N) is a standard Gaussian
random matrix if

(

ℜG
(N)
ij

)

1≤i ,j≤N
,
(

ℑG
(N)
ij

)

1≤i ,j≤N

are independent Gaussian variables with mean zero and variance
1

2N .
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Main theorem: regularization of Brown measure

Theorem (Piotr Śniady, 2001)

Let A(N) be a sequence of random matrices which converges in
⋆–moments to x almost surely.
There exists a sequence (tN) of numbers which converges to 0
such that the corrected sequence

A′(N) := A(N) +
√

tNG (N)

fulfills:

lim
N→∞

‖A′(N) − A(N)‖ = 0

holds almost surely (”the correction is small”),

empirical eigenvalues distributions of matrices A′(N) converge
to the Brown measure of x almost surely example skip proof
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Regularization by Cauchy matrix

This result was inspired by the work of Uffe Haagerup who
considered not the Gaussian, but the Cauchy correction.
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Regularization by Cauchy matrix

This result was inspired by the work of Uffe Haagerup who
considered not the Gaussian, but the Cauchy correction. Matrix
Cauchy distribution is an analogue of the usual Cauchy
distribution. It is the distribution of GH−1, where G , H are
independent standard Gaussian random matrices.
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Regularization by Cauchy matrix

This result was inspired by the work of Uffe Haagerup who
considered not the Gaussian, but the Cauchy correction. Matrix
Cauchy distribution is an analogue of the usual Cauchy
distribution. It is the distribution of GH−1, where G , H are
independent standard Gaussian random matrices.

Disadvantage of this correction: Cauchy distribution has a very
heavy tail, for example none of its moments is finite.
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Is Brown measure usually continuous?

Conjecture

Let x ∈ A be some element and let (A(N)) be the most natural
sequence of random matrices such that A(N) converges to x in
⋆–moments. Then the sequence of empirical eigenvalues
distributions µA(N) converges to µx .
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Is Brown measure usually continuous?

Conjecture

Let x ∈ A be some element and let (A(N)) be the most natural
sequence of random matrices such that A(N) converges to x in
⋆–moments. Then the sequence of empirical eigenvalues
distributions µA(N) converges to µx .

The key element of the above conjecture are the words the most
natural since nobody knows what exactly should it mean in our
context.
Nevertheless, this conjecture seems to be very important.
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Regularization by Haar unitary?

Haar unitary matrix U(N) is a random matrix, the distribution of
which is the uniform (Haar) measure on the group of unitary
matrices.
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Regularization by Haar unitary?

Haar unitary matrix U(N) is a random matrix, the distribution of
which is the uniform (Haar) measure on the group of unitary
matrices.

Conjecture

Suppose that A(N) converges to x in ⋆–moments almost surely, let
U(N) be a sequence of independent Haar unitary matrices, let u be
a Haar unitary such that x and u are free. Is it true that for t > 0
we have µA(N)+tU(N) → µx+tu? Is it true that µA(N)U(N) → µxu?
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Regularization by Haar unitary?

Haar unitary matrix U(N) is a random matrix, the distribution of
which is the uniform (Haar) measure on the group of unitary
matrices.

Conjecture

Suppose that A(N) converges to x in ⋆–moments almost surely, let
U(N) be a sequence of independent Haar unitary matrices, let u be
a Haar unitary such that x and u are free. Is it true that for t > 0
we have µA(N)+tU(N) → µx+tu? Is it true that µA(N)U(N) → µxu?

This conjecture would solve the long–standing problem about the
eigenvalues of A(N)U(N).
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Matrix Brownian motion

We say that M(N)(t) is a matrix Brownian motion,

M(N)(t) =
(

M
(N)
ij (t)

)

1≤i ,j≤N
,

if
(

ℜM
(N)
ij

)

1≤i ,j≤N
,
(

ℑM
(N)
ij

)

1≤i ,j≤N

are independent Brownian motions.
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Idea of the proof

1. We define a matrix–valued stochastic process

A
(N)
t = A(N) + M

(N)
t .

Then A(N) +
√

tNG (N) has the same distribution as A
(N)
tN

.
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Idea of the proof

1. We define a matrix–valued stochastic process

A
(N)
t = A(N) + M

(N)
t .

Then A(N) +
√

tNG (N) has the same distribution as A
(N)
tN

.

2. Brown measure is defined in terms of Fuglede–Kadison
determinant. It is enough to construct a sequence of (tN) such that

lim
N→∞

∆(A
(N)
tN

) = ∆(x)

holds almost surely.
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Idea of the proof (continued)

3. We say that λ1 ≤ · · · ≤ λN are the singular values of a matrix A
if λ1, . . . , λN are eigenvalues of

√
A⋆A.
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Idea of the proof (continued)

3. We say that λ1 ≤ · · · ≤ λN are the singular values of a matrix A
if λ1, . . . , λN are eigenvalues of

√
A⋆A.

The Fuglede–Kadison determinant of A can be expressed in terms
of the singular values:

log ∆(A) =
log λ1 + · · · + log λN

N
.
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Idea of the proof (continued)

3. We say that λ1 ≤ · · · ≤ λN are the singular values of a matrix A
if λ1, . . . , λN are eigenvalues of

√
A⋆A.

The Fuglede–Kadison determinant of A can be expressed in terms
of the singular values:

log ∆(A) =
log λ1 + · · · + log λN

N
.

Let λ1(t) ≤ · · · ≤ λN(t) be singular values of A
(N)
t . Our goal is to

show that small singular values of A
(N)
t cannot be too small.
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Idea of the proof (continued)

4. Singular values fulfill the following stochastic differential
equation (in the Itô sense):

dλi (t) = ℜ(dMii ) +
dt

2λi



1 − 1

2N
+

∑

j 6=i

λ2
i + λ2

j

N(λ2
i − λ2

j )



 ,

where M is a standard matrix Brownian motion.
The above equation allows us to show bottom bounds for singular
values.
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Matrix Brownian motion

We say that M(N)(t) is a matrix Brownian motion,

M(N)(t) =
(

M
(N)
ij (t)

)

1≤i ,j≤N
,

if
(

ℜM
(N)
ij

)

1≤i ,j≤N
,
(

ℑM
(N)
ij

)

1≤i ,j≤N

are independent Brownian motions.
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Matrix Brownian motion

We say that M(N)(t) is a matrix Brownian motion,

M(N)(t) =
(

M
(N)
ij (t)

)

1≤i ,j≤N
,

if
(

ℜM
(N)
ij

)

1≤i ,j≤N
,
(

ℑM
(N)
ij

)

1≤i ,j≤N

are independent Brownian motions.

We define a matrix–valued stochastic process

A
(N)
t = A(N) + M

(N)
t .

Then A(N) +
√

tNG (N) has the same distribution as A
(N)
tN

.

Piotr Śniady Eigenvalues of non-hermitian matrices



Introduction
Brown spectral measure

Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Main theorem
Other random corrections
Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Singular values

We say that λ1 ≤ · · · ≤ λN are the singular values of a matrix A if
λ1, . . . , λN are eigenvalues of

√
A⋆A.
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Singular values

We say that λ1 ≤ · · · ≤ λN are the singular values of a matrix A if
λ1, . . . , λN are eigenvalues of

√
A⋆A.

The Fuglede–Kadison determinant of A can be expressed in terms
of the singular values:

log ∆(A) =
log λ1 + · · · + log λN

N
.
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Singular values

We say that λ1 ≤ · · · ≤ λN are the singular values of a matrix A if
λ1, . . . , λN are eigenvalues of

√
A⋆A.

The Fuglede–Kadison determinant of A can be expressed in terms
of the singular values:

log ∆(A) =
log λ1 + · · · + log λN

N
.

What can we say about the singular values of A
(N)
t which will be

denoted by λ1(t) ≤ · · · ≤ λN(t)?
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Eigenvalues of a perturbed matrix

Lemma

If D is a diagonal matrix with eigenvalues ν1, . . . , νN and ∆D is
any matrix then the eigenvalues ν ′

1, . . . , ν
′
N of a matrix D + ∆D

are given by

ν ′
i = νi + ∆Dii +

∑

j 6=i

∆Dij∆Dji

νi − νj

+ O
(

‖∆D‖3
)

for small enough ‖∆D‖.
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Singular values of a perturbed matrix

Corollary

If F is a diagonal matrix with positive eigenvalues λ1, . . . , λN , and
∆F is any matrix then the singular values λ′

1, . . . , λ
′
N of F + ∆F

are given by

(λ′
i )

2 = λ2
i + 2λiℜ∆Fii +

∑

j

|∆Fji |2

+
∑

j 6=i

λ2
i |∆Fij |2 + 2λiλjℜ(∆Fij∆Fji ) + λ2

j |∆Fji |2

λ2
i − λ2

j

+ O
(

‖∆F‖3
)

.



Singular values of a perturbed matrix

Corollary

If F is a diagonal matrix with positive eigenvalues λ1, . . . , λN , and
∆F is any matrix then the singular values λ′

1, . . . , λ
′
N of F + ∆F

are given by

(λ′
i )

2 = λ2
i + 2λiℜ∆Fii +

∑

j

|∆Fji |2

+
∑

j 6=i

λ2
i |∆Fij |2 + 2λiλjℜ(∆Fij∆Fji ) + λ2

j |∆Fji |2

λ2
i − λ2

j

+ O
(

‖∆F‖3
)

.

We can always find unitaries U, V such that F = UA
(N)
t V is

diagonal; then ∆F = U(At+∆t − At)V . Thus we get a relation
between the singular values of At and At+∆t .
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Stochastic differential equation for singular values

This gives a stochastic differential equation (in the Itô sense) for
λ1(t), . . . , λN(t), the singular values of At :

dλi (t) = ℜ(dMii ) +
dt

2λi



1 − 1

2N
+

∑

j 6=i

λ2
i + λ2

j

N(λ2
i − λ2

j )



 , (2)

where M is a standard matrix Brownian motion.
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For each k ∈ {1, 2} let λ
(k)
1 (t), . . . , λ

(k)
N (t) be a solution to the

system of equations (2). If

λ
(1)
i (t) < λ

(2)
i (t) (3)

holds for all 1 ≤ i ≤ N and t = 0 then it holds true for all t ≥ 0.
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i (t) (3)
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Proof.

Let t0 be the minimal value of t for which (3) is not true; for

example λ
(1)
j (t0) = λ

(2)
j (t0). If λ

(1)
i (t0) = λ

(2)
i (t0) for all i then

(uniqueness of solutions) it follows that λ
(1)
i (t) = λ

(2)
i (t) for every

t ≥ 0, contradiction.



Lemma

For each k ∈ {1, 2} let λ
(k)
1 (t), . . . , λ

(k)
N (t) be a solution to the

system of equations (2). If

λ
(1)
i (t) < λ

(2)
i (t) (3)

holds for all 1 ≤ i ≤ N and t = 0 then it holds true for all t ≥ 0.

Proof.

Let t0 be the minimal value of t for which (3) is not true; for

example λ
(1)
j (t0) = λ

(2)
j (t0). If λ

(1)
i (t0) = λ

(2)
i (t0) for all i then

(uniqueness of solutions) it follows that λ
(1)
i (t) = λ

(2)
i (t) for every

t ≥ 0, contradiction. Therefore λ
(1)
i (t0) ≤ λ

(2)
i (t0) and at least one

inequality is sharp. Then (use stochastic differential equation)

d
[

λ
(2)
j (t0) − λ

(1)
j (t0)

]

> 0

contradicts the minimality of t0.



Introduction
Brown spectral measure

Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Main theorem
Other random corrections
Proof of the main theorem (sketch)
Proof of the main theorem (complete)

The lemma on comparison

Corollary

For every t ≥ 0 and a matrix A there exist random matrices
G (1), G (2) such that each matrix G (i) is a standard Gaussian
random matrix (but matrices G (1) and G (2) might be dependent)
and such that

tr f
(

∣

∣

√
t G (1)(ω)

∣

∣

)

≤ tr f
(

∣

∣A +
√

t G (2)(ω)
∣

∣

)

holds for every ω ∈ Ω and every nondecreasing function f : R → R.
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Random regularization of Fuglede–Kadison determinant

Theorem

Let A(N) be a sequence of random matrices which converges in
⋆–moments to x almost surely and let t > 0. Then the sequence of
random matrices A′(N) := A(N) +

√
tG (N) converges in ⋆–moments

to some operator xt . Furthermore,

lim
N→∞

tr log |A′(N)| = log ∆(xt)
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Invariant subspaces in II1 factors

Final remarks

Main theorem
Other random corrections
Proof of the main theorem (sketch)
Proof of the main theorem (complete)

Random regularization of Fuglede–Kadison determinant

Theorem

Let A(N) be a sequence of random matrices which converges in
⋆–moments to x almost surely and let t > 0. Then the sequence of
random matrices A′(N) := A(N) +

√
tG (N) converges in ⋆–moments

to some operator xt . Furthermore,

lim
N→∞

tr log |A′(N)| = log ∆(xt)

Proof.

The existence of xt is given by free probability theory (easy).
Difficult is the convergence of determinants (next
transparency).
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Theorem

lim
N→∞

tr log |A′(N)| = log ∆(xt)

Proof.

fǫ(r) =
ln(r2 + ǫ)

2
, gǫ(r) = ln r − ln(r2 + ǫ)

2
.

lim
N→∞

tr fǫ(A
′(N)) = φ

[

fǫ(xt)
]

holds almost surely for ǫ > 0 (easy). It remains to prove

lim
ǫ→0

lim inf
N→∞

tr gǫ(A
′(N)) = 0.

Upper bound is easy. Bottom bound: gǫ is increasing!

tr gǫ(A
′(N)) ≥ tr gǫ(

√
tG (N))

The distribution of the singular values of G (N) is known and the
right-hand side can be directly computed.



Corollary

Let A(N) be a sequence of random matrices which converges in
⋆–moments to x almost surely. Then there exists a sequence tN
which converges to 0 and such that the sequence of random
matrices A′(N) := A(N) +

√
tNG (N) fulfills

lim
N→∞

tr log |A′(N)| = log ∆(x)
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Corollary

Let A(N) be a sequence of random matrices which converges in
⋆–moments to x almost surely. Then there exists a sequence tN
which converges to 0 and such that the sequence of random
matrices A′(N) := A(N) +

√
tNG (N) fulfills

lim
N→∞

tr log |A′(N)| = log ∆(x)

Proof.

For each t > 0

lim
N→∞

tr log |A(N) +
√

tG (N)| = log ∆(xt) ≥ log ∆(x)

so we can chose a sequence tN which converges to 0 and such that

lim inf
N→∞

tr log |A(N) +
√

tNG (N)| ≥ log ∆(x).

The upper bound is easy.



Theorem

Let (tN) be the sequence given by the previous corollary. Then the
sequence of empirical distributions of matrices
A′(N) := A(N) +

√
tNG (N) converges to the Brown measure of x

almost surely.

Proof.
∫

C

f (λ) dµy (λ) =
1

2π
〈f (λ),∇2 ln∆(y − λ)〉 =

1

2π

∫

C

[

∇2f (λ)
]

ln∆(y − λ) dλ
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Theorem

Let (tN) be the sequence given by the previous corollary. Then the
sequence of empirical distributions of matrices
A′(N) := A(N) +

√
tNG (N) converges to the Brown measure of x

almost surely.

Proof.
∫

C

f (λ) dµy (λ) =
1

2π
〈f (λ),∇2 ln∆(y − λ)〉 =

1

2π

∫

C

[

∇2f (λ)
]

ln∆(y − λ) dλ

It is enough to prove that functions tr ln
∣

∣A′(N)(ω)− λ
∣

∣ converge to
ln∆(x − λ) in the local L1 norm almost surely. We proved that

lim
N→∞

tr ln |A′(N) − λ| = ln∆(x − λ)

for almost all λ ∈ K holds almost surely; then majorized
convergence theorem and Fubini theorem finish the proof.
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Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
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Invariant subspace conjecture
Connes’ embedding problem
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Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
Can we always find a nontrivial closed subspace K ⊂ H such that:
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Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
Can we always find a nontrivial closed subspace K ⊂ H such that:

K is an invariant subspace for x;
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Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
Can we always find a nontrivial closed subspace K ⊂ H such that:

K is an invariant subspace for x;

orthogonal projection pK fulfills pK ∈ A
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Brown spectral measure

Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
Can we always find a nontrivial closed subspace K ⊂ H such that:

K is an invariant subspace for x;

orthogonal projection pK fulfills pK ∈ A

Idea of attack:

1 approximate operator x by random matrices;
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Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
Can we always find a nontrivial closed subspace K ⊂ H such that:

K is an invariant subspace for x;

orthogonal projection pK fulfills pK ∈ A

Idea of attack:

1 approximate operator x by random matrices;

2 study the invariant subspaces for the random matrix models;
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Brown spectral measure

Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Invariant subspace conjecture: Relative version

Conjecture

Let x ∈ A ⊂ B(H) and x /∈ C, where A is a finite von Neumann
algebra (II1 factor) and H is a Hilbert space.
Can we always find a nontrivial closed subspace K ⊂ H such that:

K is an invariant subspace for x;

orthogonal projection pK fulfills pK ∈ A

Idea of attack:

1 approximate operator x by random matrices;

2 study the invariant subspaces for the random matrix models;

3 deduce existence of invariant subspaces for x ;
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Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Connes’ embedding problem

Conjecture

Is it true that for every x ∈ A there exists a sequence of matrices
A(N) which converges to x in ⋆-moments?
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Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Connes’ embedding problem

Conjecture

Is it true that for every x ∈ A there exists a sequence of matrices
A(N) which converges to x in ⋆-moments?

From the following on, we will study only x for which such a
sequence exists.
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Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Spectral theorem

Theorem (Uffe Haagerup, 2001)

An analogue of Jordan’s decomposition for finite matrices holds
true for x ∈ A:
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Spectral theorem

Theorem (Uffe Haagerup, 2001)

An analogue of Jordan’s decomposition for finite matrices holds
true for x ∈ A: if G1, G2 ⊂ C are open sets such that G1 ∪ G2 = C
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Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Spectral theorem

Theorem (Uffe Haagerup, 2001)

An analogue of Jordan’s decomposition for finite matrices holds
true for x ∈ A: if G1, G2 ⊂ C are open sets such that G1 ∪ G2 = C

then there exists a projection p ∈ A, the image of which is
invariant for x:

x =

[

x11 x12

0 x22

]

Piotr Śniady Eigenvalues of non-hermitian matrices



Introduction
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Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Spectral theorem

Theorem (Uffe Haagerup, 2001)

An analogue of Jordan’s decomposition for finite matrices holds
true for x ∈ A: if G1, G2 ⊂ C are open sets such that G1 ∪ G2 = C

then there exists a projection p ∈ A, the image of which is
invariant for x:

x =

[

x11 x12

0 x22

]

and the Brown measure of x11 is supported in G1 and x22 is
supported in G2.

Piotr Śniady Eigenvalues of non-hermitian matrices



Introduction
Brown spectral measure

Random regularization of spectral measure
Invariant subspaces in II1 factors

Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Existence of invariant subspaces

Corollary

Suppose that x ∈ A is such that:

x can be approximated by matrices;

Brown measure µx is not supported in only one point in C;
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Final remarks

Invariant subspace conjecture
Connes’ embedding problem
Haagerup’s spectral theorem

Existence of invariant subspaces

Corollary

Suppose that x ∈ A is such that:

x can be approximated by matrices;

Brown measure µx is not supported in only one point in C;

Then x has a nontrivial invariant subspace K; furthermore pK ∈ A.
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Summary

Brown spectral measure gives information about spectral
properties of random matrices and operators;
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Summary

Brown spectral measure gives information about spectral
properties of random matrices and operators;

Brown spectral measure does not behave in a continuous way
for non–hermitian random matrices and non–hermitian
operators;
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Summary

Brown spectral measure gives information about spectral
properties of random matrices and operators;

Brown spectral measure does not behave in a continuous way
for non–hermitian random matrices and non–hermitian
operators;

random regularization by a random correction repairs the
continuity. In this way questions concerning spectral properties
of random matrices and operators are related to each other;
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Final remarks

Summary
Further reading
Navigation bar

Summary

Brown spectral measure gives information about spectral
properties of random matrices and operators;

Brown spectral measure does not behave in a continuous way
for non–hermitian random matrices and non–hermitian
operators;

random regularization by a random correction repairs the
continuity. In this way questions concerning spectral properties
of random matrices and operators are related to each other;

Haagerup’s spectral theorem: a generalization of Jordan form
for finite matrices is true also in finite von Neumann algebras;
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Postscript: are random matrices really necessary?

Theorem (Uffe Haagerup and Hanne Schultz, 2004)

New proof Haagerup’s spectral theorem which does not use
Connes’ embedding conjecture and does not use random matrices.
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Example

t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Random regularization of nilpotent matrix Ξ(N)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















Matrices Ξ(N) are nilpotent; they converge to
a Haar unitary, the spectral measure of which
is the uniform measure on the unit circle.
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Example

t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Random regularization of nilpotent matrix Ξ(N)

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1 Ξ(N) =

















0 0 · · · 0 0
1 0 · · · 0 0

0 1
. . .

...
...

...
. . .

. . . 0 0
0 · · · 0 1 0

















Matrices Ξ(N) are nilpotent; they converge to
a Haar unitary, the spectral measure of which
is the uniform measure on the unit circle.
Our goal: study eigenvalues of Ξ(N) +

√
tG (N)

for N = 100 and different values of t.
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Example

t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Example: t = 0

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Sample eigenvalues of a
random matrix
Ξ(N) +

√
tG (N) for

N = 100 and t = 0.
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Example

t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Example: t = 10−30

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Sample eigenvalues of a
random matrix
Ξ(N) +

√
tG (N) for

N = 100 and t = 10−30.
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t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Example: t = 10−5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Sample eigenvalues of a
random matrix
Ξ(N) +

√
tG (N) for

N = 100 and t = 10−5.
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t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Example: t = 10−2

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Sample eigenvalues of a
random matrix
Ξ(N) +

√
tG (N) for

N = 100 and t = 10−2.
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t = 10−30
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t = 10−2

t = 3 · 10−1

Example: t = 3 · 10−1

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

Sample eigenvalues of a
random matrix
Ξ(N) +

√
tG (N) for

N = 100 and t = 3 · 10−1.
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Example

t = 0
t = 10−30

t = 10−5

t = 10−2

t = 3 · 10−1

Example: summary

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

t = 10−30

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

t = 10−5

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

t = 10−2

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

t =
3 · 10−1

go back
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