... are unique O

conjecture: 00 **maps** 000000 taxonomy of edges

top-twisted maps

dual combinatorics of Jack polynomials and maps

Piotr Śniady

Uniwersytet im. Adama Mickiewicza w Poznaniu & Polska Akademia Nauk

- Jack polynomials,
- deformation of characters of the symmetric groups S_n ,
- amazing combinatorial conjectures related to —> maps,
- extra deformation parameter α, new scaling and universality for random matrices,

- Jack polynomials,
- deformation of characters of the symmetric groups S_n ,
- amazing combinatorial conjectures related to —> maps,
- extra deformation parameter α, new scaling and universality for random matrices,

- Jack polynomials,
- deformation of characters of the symmetric groups S_n ,
- amazing combinatorial conjectures related to → maps,
- extra deformation parameter α, new scaling and universality for random matrices,

- Jack polynomials,
- deformation of characters of the symmetric groups S_n ,
- amazing combinatorial conjectures related to —> maps,
- extra deformation parameter α, new scaling and universality for random matrices,

- Jack polynomials,
- deformation of characters of the symmetric groups S_n ,
- amazing combinatorial conjectures related to —> maps,
- extra deformation parameter α, new scaling and universality for random matrices,

... are unique

conjectures 00 maps 000000 taxonomy of edges

top-twisted maps

characters of the symmetric group S_n :

$$\chi^{(1)}_\lambda(\pi) := rac{{\mathsf{Tr}}\,
ho_\lambda(\pi)}{{\mathsf{Tr}}\,
ho_\lambda({\mathsf{Id}})}$$

$$\mathsf{Ch}_{\pi}^{(1)}(\lambda) := \begin{cases} \underbrace{|\lambda| \cdot (|\lambda|-1) \cdots (|\lambda|-|\pi|+1)}_{|\pi| \text{ factors}} \chi_{\lambda}^{(1)}(\pi) & \text{if } |\pi| \leq |\lambda| \\ \\ 0 & \text{otherwise} \end{cases}$$

 \longrightarrow Kerov & Olshanski

Jack	characters	
0000	>	

... are unique

conjectures

maps 000000 taxonomy of edges

top-twisted maps

Jack characters:

$$J_{\lambda}^{(lpha)} = \sum_{\pi} \chi_{\lambda}^{(lpha)}(\pi) \ p_{\pi} rac{n!}{z_{\pi}}$$

$$\begin{split} \mathsf{Ch}_{\pi}^{(\alpha)}(\lambda) &= \\ \alpha^{-\frac{|\pi|-\ell(\pi)}{2}} \underbrace{|\lambda| \cdot (|\lambda|-1) \cdots (|\lambda|-|\pi|+1)}_{|\pi| \text{ factors}} \chi_{\lambda}^{(\alpha)}(\pi, 1, 1, \dots, 1) \\ & \text{ if } |\pi| \leq |\lambda| \end{split}$$

 \longrightarrow Lassalle; Dołęga & Féray

Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
00●0	O	00	000000	0000	0000

$$Ch_{1}(\lambda) = \sum_{i} \lambda_{i},$$

$$Ch_{2}(\lambda) = \sqrt{\alpha} \sum_{i} (\lambda_{i}^{2} - \lambda_{i}) - \frac{1}{\sqrt{\alpha}} \sum_{i \leq i} 2\lambda_{i}$$

polynomials in $\lambda_1, \lambda_2, \ldots$

Jack d	haracters
0000	

... are unique

conjectures

maps 000000 taxonomy of edges

top-twisted maps

$$Ch_{2}(\lambda) = \sqrt{\alpha} \sum_{i} \left(x_{i}^{2} - \left(\frac{-i}{\alpha}\right)^{2} \right) + \left(-\sqrt{\alpha} + \frac{2}{\sqrt{\alpha}} \right) \sum_{i} \left(x_{i} - \left(\frac{-i}{\alpha}\right) \right)$$

where
$$x_i = \lambda_i - \frac{i}{\alpha}$$

symmetric polynomials in x_1, x_2, \ldots proof \longrightarrow LASSALLE

 \rightarrow algebra of α -polynomial functions of KEROV & OLSHANSKI

conjectures

maps 1 000000

taxonomy of edges

top-twisted maps

for each π and each $\alpha > 0$ Ch $_{\pi}(\lambda_1, \lambda_2, ...)$ is the unique polynomial such that: \longrightarrow Féray

• $\operatorname{Ch}_{\pi}\left(x_{1}+\frac{1}{\alpha},x_{2}+\frac{2}{\alpha},\ldots\right)$ is symmetric in x_{1},x_{2},\ldots ;

▶ polynomial Ch_π(λ₁, λ₂,...) is of degree |π|; its top-degree homogeneous part is equal to

$$lpha^{rac{|\pi|-\ell(\pi)}{2}} p_{\pi};$$

 \blacktriangleright for all partitions $\lambda = (\lambda_1, \lambda_2, \dots)$ such that $|\lambda| < |\pi|$

$$\mathsf{Ch}_{\pi}(\lambda_1,\lambda_2,\dots)=0$$

conjectures

maps t 000000

taxonomy of edges

top-twisted maps

for each π and each $\alpha > 0$ Ch $_{\pi}(\lambda_1, \lambda_2, ...)$ is the unique polynomial such that:

• $Ch_{\pi}\left(x_1+\frac{1}{\alpha},x_2+\frac{2}{\alpha},\ldots\right)$ is symmetric in x_1,x_2,\ldots ;

▶ polynomial Ch_π(λ₁, λ₂,...) is of degree |π|; its top-degree homogeneous part is equal to

$$\alpha^{\frac{|\pi|-\ell(\pi)}{2}} p_{\pi};$$

▶ for all partitions $\lambda = (\lambda_1, \lambda_2, \dots)$ such that $|\lambda| < |\pi|$

$$\mathsf{Ch}_{\pi}(\lambda_1,\lambda_2,\dots)=0$$

if we view lpha as indeterminate,

► for each Young diagram λ $\operatorname{Ch}_{\pi}(\lambda) \in \mathbb{Q}\left[\sqrt{\alpha}, \frac{1}{\sqrt{\alpha}}\right]$ is a Laurent polynomial of degree (at most) $|\pi| - \ell(\pi)$

structure coefficients for Jack characters:

$$\operatorname{Ch}_2\operatorname{Ch}_2=2\delta\operatorname{Ch}_2+2\operatorname{Ch}_{1,1}+4\operatorname{Ch}_3+\operatorname{Ch}_{2,2},$$

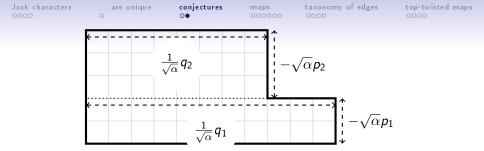
 $Ch_3 Ch_2 = 6\delta Ch_3 + Ch_{3,2} + 6 Ch_{2,1} + 6 Ch_4,$

$$\begin{split} \mathsf{Ch}_3 \, \mathsf{Ch}_3 &= (6\delta^2 + 3)\,\mathsf{Ch}_3 + 9\delta\,\mathsf{Ch}_{2,1} + 18\delta\,\mathsf{Ch}_4 + 3\,\mathsf{Ch}_{1,1,1} + \\ &+ 9\,\mathsf{Ch}_{3,1} + 9\,\mathsf{Ch}_{2,2} + 9\,\mathsf{Ch}_5 + \mathsf{Ch}_{3,3}, \end{split}$$

 $\mathsf{Ch}_{2,2}\,\mathsf{Ch}_2 = 4\delta\,\mathsf{Ch}_{2,2} + 8\,\mathsf{Ch}_4 + 4\,\mathsf{Ch}_{2,1,1} + 8\,\mathsf{Ch}_{3,2} + \mathsf{Ch}_{2,2,2}$

$$\delta = \sqrt{\alpha} - \frac{1}{\sqrt{\alpha}}$$

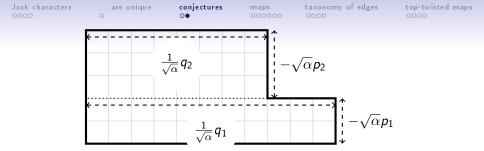
more conjectures \longrightarrow SNIADY arXiv:1603.04268; partial results \longrightarrow BURCHARDT



$$- Ch_3 = p_1^3 q_1 + 3p_1^2 q_1^2 + p_1 q_1^3 + 3p_1^2 p_2 q_2 + 3p_1 p_2^2 q_2 + p_2^3 q_2 + 3p_1 p_2 q_1 q_2 + 3p_1 p_2 q_2^2 + 3p_2^2 q_2^2 + p_2 q_2^3 + 3p_1^2 q_1 \gamma + 3p_1 q_1^2 \gamma + 6p_1 p_2 q_2 \gamma + 3p_2^2 q_2 \gamma + 3p_2 q_2^2 \gamma + 2p_1 q_1 \gamma^2 + 2p_2 q_2 \gamma^2 + p_1 q_1 + p_2 q_2$$

$$\gamma = -\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}}$$

see also $\longrightarrow \operatorname{KEROV}$ polynomials



$$- \operatorname{Ch}_{3}^{\operatorname{top}} = p_{1}^{3}q_{1} + 3p_{1}^{2}q_{1}^{2} + p_{1}q_{1}^{3} + 3p_{1}^{2}p_{2}q_{2} + 3p_{1}p_{2}^{2}q_{2}$$

+ $p_{2}^{3}q_{2} + 3p_{1}p_{2}q_{1}q_{2} + 3p_{1}p_{2}q_{2}^{2} + 3p_{2}^{2}q_{2}^{2} + p_{2}q_{2}^{3}$
+ $3p_{1}^{2}q_{1}\gamma + 3p_{1}q_{1}^{2}\gamma + 6p_{1}p_{2}q_{2}\gamma + 3p_{2}^{2}q_{2}\gamma$
+ $3p_{2}q_{2}^{2}\gamma + 2p_{1}q_{1}\gamma^{2} + 2p_{2}q_{2}\gamma^{2}$

$$\gamma = -\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}}$$

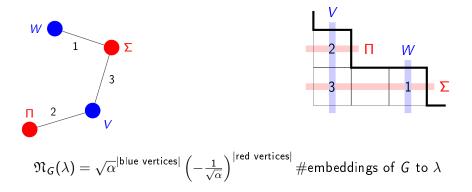
see also $\longrightarrow \operatorname{KEROV}$ polynomials

Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
2000	O	00	●00000	0000	0000

 $Ch_{\pi} = ?$

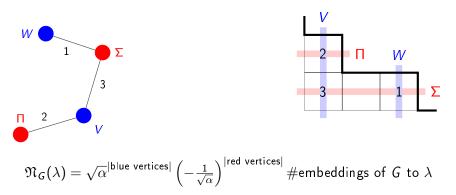
Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
0000	O	00	○●○○○○	0000	0000
	are unique O	5		, ,	

embeddings of a graph to a Young diagram



Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
0000	O	00	0●0000	0000	0000

embeddings of a graph to a Young diagram



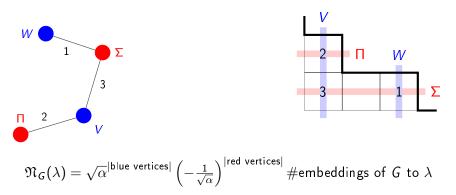
Problem

find some nice family of graphs such that

$$\mathsf{Ch}_{\pi}(\lambda) = \sum_{G} c_{G} \,\,\mathfrak{N}_{G}(\lambda)$$

Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
0000	O	00	0●0000	0000	0000

embeddings of a graph to a Young diagram



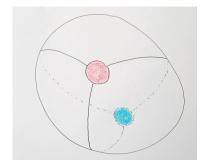
Problem

find some nice family of maps such that

$$\mathsf{Ch}_{\pi}(\lambda) = \sum_{G} c_{G} \,\,\mathfrak{N}_{G}(\lambda)$$

Jack charactersare unique conjectu 0000 0 00	res maps taxonomy of edges	top-twisted maps
---	----------------------------	------------------

map is a graph on a surface



map on a sphere

...are unique

conjectures

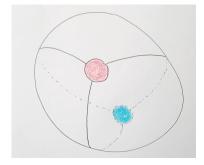
maps 00●000

taxonomy of edges

top-twisted maps

map is a graph on a surface

each map can be visualized as a ribbon graph



map on a sphere

... are unique

conjectures

maps 00●000

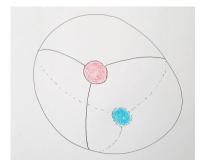
taxonomy of edges

top-twisted maps

map is a graph on a surface

each map can be visualized as a ribbon graph

today: all maps are bicolored (red and blue vertices)



map on a sphere

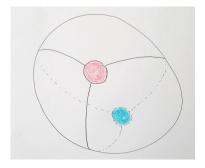
.... are unique

conjectures

maps 000●00 taxonomy of edges

top-twisted maps

we require that if we cut the surface along the edges the surface breaks into a number of faces (=polygons)

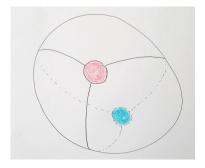


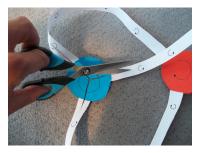
... are unique

conjectures 00 **maps** 000●00 taxonomy of edges

top-twisted maps

we require that if we cut the surface along the edges the surface breaks into a number of faces (=polygons)



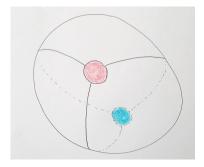


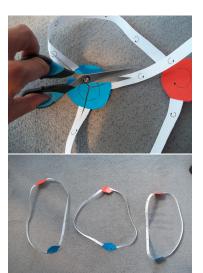
... are unique

conjectures 00 **maps** 000●00 taxonomy of edges

top-twisted maps

we require that if we cut the surface along the edges the surface breaks into a number of faces (=polygons) \sim



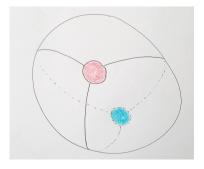


... are unique

conjectures 00 maps 000●00 taxonomy of edges

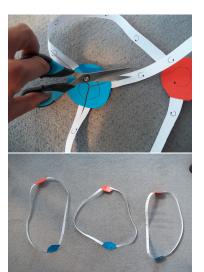
top-twisted maps

we require that if we cut the surface along the edges the surface breaks into a number of faces (=polygons)



a map with three faces

```
one 2 \cdot 1-gon, one 2 \cdot 1-gon,
one 2 \cdot 1-gon, so
face-type (1, 1, 1)
```

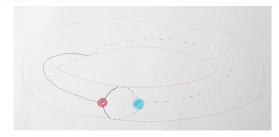


...are unique

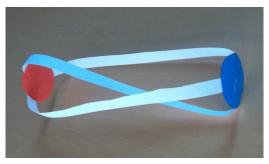
conjectures

maps 0000●0 taxonomy of edges

top-twisted maps 0000



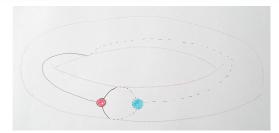
map on a torus, with one face



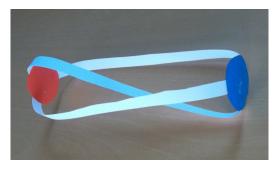
.... are unique

conjectures 00 **maps** 0000●0 taxonomy of edges

top-twisted maps



map on a torus, with one face

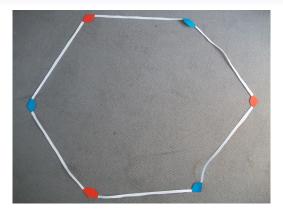


... are unique

conjectures

maps 0000●0 taxonomy of edges

top-twisted maps



map on a torus, with one face

···· * ··· * ··· * ··· one $2 \cdot 3$ -gon, so face-type (3)

Jack 0000	characters	are unique O	conjectures 00	maps 00000●	taxonomy of edges 0000	top-twisted maps 0000	
	conjectu	re					
	there exists some nice family of coefficients $\operatorname{mon}_M \in \mathbb{Q}[\gamma]$ such that						
	SUCH that		$_{r}(\lambda)=\sum_{M}r$	$\operatorname{mon}_M\mathfrak{N}_{\mathcal{N}}$	$_{I}(\lambda),$		
	where the	e sum runs ov	er maps <i>M</i>	with face	-type π		

Jack 0000	characters	are unique O	conjectures 00	maps 00000●	taxonomy of edges 0000	top-twisted maps 0000
	conject	ure				
	there ex such tha		e family of a	coefficient	s mon $_M \in \mathbb{Q}[\gamma]$	
		C	$h_{\pi}(\lambda) = \sum_{M}$	ີ mon _M	$M_M(\lambda),$	

where the sum runs over maps ${\it M}$ with face-type π

hint from GOULDEN & JACKSON: how (non)orientable is the map M?

```
Jack characters are unique conjectures maps taxonomy of edges top-twisted maps for an edge E of a map M...
remove the edge E;
what happens to the number of faces of M \setminus E?
we say that E is:
```

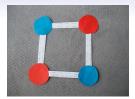
- border, if #faces $(M \setminus E) = \#$ faces(M) - 1;
- twisted,
 if #faces(M \ E) = #faces(M);
- handle,

 $\mathsf{if} \ \#\mathsf{faces}(M \setminus E) = \#\mathsf{faces}(M) + 1;$

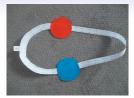
Jack	сh	ara	ct	ers	5
0000)				

...are unique O

conjectures 00 **maps** 000000 taxonomy of edges ○●○○ top-twisted maps

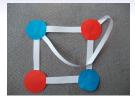


border (bad)



twisted

(nice)



handle (very nice)

factor := $\frac{1}{2}$	$factor:=\gamma$	factor := 1
2		

... are unique

conjectures

maps 000000 taxonomy of edges 00●0 top-twisted maps

how non-orientable is your map?

O choose random order of the edges!

...are unique

conjectur 00 maps 000000 taxonomy of edges

top-twisted maps

how non-orientable is your map?

- Choose random order of the edges!
- take the first edge;
 is it twisted / border / handle?
 calculate the corresponding factor!

... are unique

conjec 00 **maps** 000000 taxonomy of edges 00●0 top-twisted maps

how non-orientable is your map?

- Choose random order of the edges!
- take the first edge;
 is it twisted / border / handle?
 calculate the corresponding factor!
- remove this edge,

... are unique

conje 00 **maps** 000000 taxonomy of edges 00●0 top-twisted maps

how non-orientable is your map?

- Choose random order of the edges!
- take the next edge; is it twisted / border / handle? calculate the corresponding factor!
- remove this edge,
- take the next edge, repeat,

... are unique

conjectu 00 **maps** 000000 taxonomy of edges 00●0 top-twisted maps

how non-orientable is your map?

- Choose random order of the edges!
- take the next edge;
 is it twisted / border / handle?
 calculate the corresponding factor!
- remove this edge,
- take the next edge, repeat,
- all edges removed? multiply all factors!

... are unique

ue co 00

onjectures

maps 000000 taxonomy of edges 00●0 top-twisted maps

how non-orientable is your map?

- Choose random order of the edges!
- take the next edge;
 is it twisted / border / handle?
 calculate the corresponding factor!
- remove this edge,
- take the next edge, repeat,
- all edges removed? multiply all factors!

take the mean value of the product

... are unique

conje 00 **maps** 000000 taxonomy of edges 00●0 top-twisted maps

how non-orientable is your map?

- Choose random order of the edges!
- I take the next edge; is it twisted / border / handle? calculate the corresponding factor!
- remove this edge,
- take the next edge, repeat,
- all edges removed? multiply all factors!

take the mean value of the product

this is the measure of non-orientability mon(M) of a map M

Jack characters 0000	are unique O	conjectures 00	maps 000000	taxonomy of edges 000●	top-twisted maps 0000
conject	ure				
	CI	$n_{\pi}(\lambda) = \sum_{M}$	ີ mon _M	$_{M}(\lambda),$	

where the sum runs over maps M with face-type π

Jack characters 0000	are unique O	conjectures 00	maps 000000	taxonomy of edges 000●	top-twisted maps 0000
bad ne	ws				
	C	$h_{\pi}(\lambda) \neq \sum_{M}$	ີmon _M ກ	$f_M(\lambda),$	
where t	he sum runs c	over maps <i>N</i>	1 with fac	e-type π	

Jack characters 0000	are unique O	conjectures 00	maps 000000	taxonomy of edges 000●	top-twisted map 0000			
bad nev	WS							
	$Ch_{\pi}(\lambda) \neq \sum mon_{M} \mathfrak{N}_{M}(\lambda),$							
where t	M where the sum runs over maps M with face-type π							
	where the sum runs over maps w with face type x							
good n	ews							
	$Ch^{top}_{\pi}(\lambda) = \sum_{M} (top-degree \; part \; in \; \gamma) mon_{M} \mathfrak{N}_{M}(\lambda),$							
where t	he sum runs c	ver maps <i>N</i>	1 with fac	e-type π				

Jack chara 0000	tersare unique O	conjectures 00	maps 000000	taxonomy of edges 000●	top-twisted maps 0000		
ba	d news						
		$\operatorname{Ch}_{\pi}(\lambda) \neq \sum_{M}$	ີ mon _M	$_{M}(\lambda),$			
wh	where the sum runs over maps M with face-type π						
go	od news						
	$Ch^{top}_{\pi}(\lambda) =$	\sum_{M} (top-degr	ee part in	$\gamma) \operatorname{mon}_M \mathfrak{N}_M(\lambda)$	·),		

where the sum runs over maps M with face-type π

$$- \operatorname{Ch}_{3} = p_{1}^{3}q_{1} + 3p_{1}^{2}q_{1}^{2} + p_{1}q_{1}^{3} + 3p_{1}^{2}p_{2}q_{2} + 3p_{1}p_{2}^{2}q_{2}$$

+ $p_{2}^{3}q_{2} + 3p_{1}p_{2}q_{1}q_{2} + 3p_{1}p_{2}q_{2}^{2} + 3p_{2}^{2}q_{2}^{2} + p_{2}q_{2}^{3}$
+ $3p_{1}^{2}q_{1}\gamma + 3p_{1}q_{1}^{2}\gamma + 6p_{1}p_{2}q_{2}\gamma + 3p_{2}^{2}q_{2}\gamma$
+ $3p_{2}q_{2}^{2}\gamma + 2p_{1}q_{1}\gamma^{2} + 2p_{2}q_{2}\gamma^{2} + p_{1}q_{1} + p_{2}q_{2}$

Jack charact	ersare unique O	conjectures 00	maps 000000	taxonomy of edges 000●	top-twisted maps 0000			
bac	news							
	$Ch_{\pi}(\lambda) eq \sum_{M}mon_{M}\mathfrak{N}_{M}(\lambda),$							
where the sum runs over maps M with face-type π								
goo	d news							
	$Ch^{top}_{\pi}(\lambda) = 2$	\sum_{M} (top-degr	ee part in	$\gamma) \operatorname{mon}_M \mathfrak{N}_M(\lambda)$),			

where the sum runs over maps M with face-type π

$$-\operatorname{Ch}_{3}^{\operatorname{top}} = p_{1}^{3}q_{1} + 3p_{1}^{2}q_{1}^{2} + p_{1}q_{1}^{3} + 3p_{1}^{2}p_{2}q_{2} + 3p_{1}p_{2}^{2}q_{2}$$

+ $p_{2}^{3}q_{2} + 3p_{1}p_{2}q_{1}q_{2} + 3p_{1}p_{2}q_{2}^{2} + 3p_{2}^{2}q_{2}^{2} + p_{2}q_{2}^{3}$
+ $3p_{1}^{2}q_{1}\gamma + 3p_{1}q_{1}^{2}\gamma + 6p_{1}p_{2}q_{2}\gamma + 3p_{2}^{2}q_{2}\gamma$
+ $3p_{2}q_{2}^{2}\gamma + 2p_{1}q_{1}\gamma^{2} + 2p_{2}q_{2}\gamma^{2}$

new scaling:

degree of a map = (number of vertices) + (exponent of γ)

main contribution from maps (with an order on egdes) such that (a) during the edge removal there are no border edges \iff (b) during the edge removal each connected component = one face

such maps are called top-twisted

new scaling:

degree of a map = (number of vertices) + (exponent of γ)

main contribution from maps (with an order on egdes) such that (a) during the edge removal there are no border edges \iff (b) during the edge removal each connected component = one face

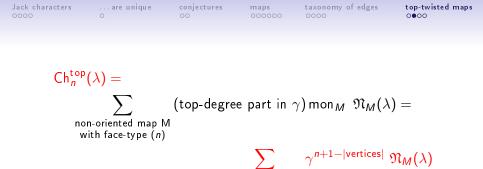
such maps are called top-twisted

there is a bijection between:

- pairs (M, ≺), where
 M is a non-oriented, rooted map with n edges, one face;
 ≺ is an order on the edges which makes M top-twisted;
- pairs (M, ≺), where
 M is an oriented, rooted map with n edges,
 arbitrary number of faces;
 ≺ an arbitrary order on the edges of M;

there is a bijection between:

- pairs (M, ≺), where
 M is a non-oriented, rooted map with n edges, one face;
 ≺ is an order on the edges which makes M top-twisted;
- pairs (M, ≺), where
 M is an oriented, rooted map with n edges,
 arbitrary number of faces;
 ≺ an arbitrary order on the edges of M;



oriented map M with *n* edges

proof: abstract characterization of Jack characters

... are unique

conjectures

maps 000000

taxonomy of edges

top-twisted maps

for each π and each lpha> 0

 $\mathsf{Ch}_{\pi}(\lambda_1,\lambda_2,\dots)$ is the unique polynomial such that:

- $Ch_{\pi}\left(x_1+\frac{1}{\alpha},x_2+\frac{2}{\alpha},\ldots\right)$ is symmetric in $x_1,x_2,\ldots;$
- ▶ polynomial Ch_π(λ₁, λ₂,...) is of degree |π|; its top-degree homogeneous part is equal to

$$\alpha^{\frac{|\pi|-\ell(\pi)}{2}} p_{\pi};$$

▶ for all partitions $\lambda = (\lambda_1, \lambda_2, \dots)$ such that $|\lambda| < |\pi|$

$$\mathsf{Ch}_{\pi}(\lambda_1,\lambda_2,\dots)=0$$

if we view lpha as indeterminate,

▶ for each Young diagram λ $\operatorname{Ch}_{\pi}(\lambda) \in \mathbb{Q}\left[\sqrt{\alpha}, \frac{1}{\sqrt{\alpha}}\right]$ is a Laurent polynomial of degree (at most) $|\pi| - \ell(\pi)$

Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
0000	O	00	000000	0000	000●

open problem

$$\mathsf{Ch}_{\pi}(\lambda) = \sum_{M} c_{M} \, \mathfrak{N}_{m}(\lambda);$$
 $c_{M} = ?$

... are unique

conjecture 00 maps 000000 taxonomy of edges

top-twisted maps

Maciej Dołęga, Valentin Féray, Piotr Śniady Jack polynomials and orientability generating series of maps Séminaire Lotharingien de Combinatoire 70 (2014), Article B70j

📔 Piotr Śniady

Top degree of Jack characters and enumeration of maps Preprint arXiv:1506.06361

📄 Piotr Śniady

Structure coefficients for Jack characters: approximate factorization property

Preprint arXiv:1603.04268

Maciej Dołęga

Top degree part in *b*-conjecture for unicellular bipartite maps Preprint arXiv:1604.03288

Jack characters	are unique	conjectures	maps	taxonomy of edges	top-twisted maps
0000	0	00	000000	0000	0000

$$\begin{split} &\mathsf{Ch}_1 = \underbrace{R_2}_{\mathsf{Ch}_1^{\mathsf{top}}}, \\ &\mathsf{Ch}_2 = \underbrace{R_3 + R_2 \gamma}_{\mathsf{Ch}_2^{\mathsf{top}}}, \end{split}$$

$$\mathsf{Ch}_3 = \underbrace{\mathsf{R}_4 + 3\mathsf{R}_3\gamma + 2\mathsf{R}_2\gamma^2}_{\mathsf{Ch}_3^{\mathsf{top}}} + \mathsf{R}_2,$$

$$Ch_{4} = \underbrace{R_{5} + 6R_{4}\gamma + R_{2}^{2}\gamma + 11R_{3}\gamma^{2} + 6R_{2}\gamma^{3}}_{Ch_{4}^{top}} + 5R_{3} + 7R_{2}\gamma.$$

...are unique

conjectures 00 **maps** 000000 taxonomy of edges

top-twisted maps

$$\begin{aligned} \alpha t \frac{\partial}{\partial t} \log \left(\sum_{\lambda} \frac{J_{\lambda}(\mathbf{x}) \ J_{\lambda}(\mathbf{y}) \ J_{\lambda}(\mathbf{z}) \ t^{|\lambda|}}{\langle J_{\lambda}, J_{\lambda} \rangle_{\alpha}} \right) = \\ \sum_{n \ge 1} t^n \left(\sum_{\mu, \nu, \tau \vdash n} h_{\mu, \nu}^{\tau}(\alpha - 1) \ p_{\mu}(\mathbf{x}) \ p_{\nu}(\mathbf{y}) \ p_{\tau}(\mathbf{z}) \right) \end{aligned}$$

conjecture [Goulden & Jackson 1996]

there exists a function η such that

$$h_{\mu,
u}^{ au}(eta) = \sum_{M} eta^{\eta(M)}$$

where the summation runs over connected, rooted maps with face-type τ , blue vertex distribution μ , and red vertex distribution ν , and $\eta(M) \in \{0, 1, 2, ...\}$