Stanley-Féray character formula

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Asymptotics of symmetric groups representations, random matrices and free probability (joint work with Valentin Féray)

Piotr Śniady

University of Wroclaw

Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices 000 0000 0000

Outline

Introduction

Stanley-Féray character formula

Characters, free probability and random matrices

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ へ ⊙

Introduction •O · · Stanley-Féray character formula 0 0 00000

Characters, free probability and random matrices

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Representations of S_n

Our favorite group today is the symmetric group S_n .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Representations of S_n

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Representations of S_n

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Representations of S_n

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Irreducible representations of S_n are indexed by Young diagrams with n boxes.

Representations of S_n

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Irreducible representations of S_n are indexed by Young diagrams with n boxes.

What happens with representations of S_n when $n \to \infty$?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi)$$
 for $\pi \in S_n$.

Introduction O O O Stanley-Féray character formula o o ooooo Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi) = rac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{Tr} \rho^{\lambda}(e)} \quad \text{for } \pi \in S_n.$$

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi) = rac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{Tr} \rho^{\lambda}(e)} \quad \text{for } \pi \in S_n.$$

A lot of questions concerning (representations of) S_n can be reduced to questions on characters.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi) = rac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{Tr} \rho^{\lambda}(e)} \quad \text{for } \pi \in S_n.$$

A lot of questions concerning (representations of) S_n can be reduced to questions on characters.

Main problem: asymptotics of characters of S_n when $n \to \infty$.

Introduction	
00	
•	
0	

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Motivations

• For a non-commutative group the representations/characters provide an analogue of the Fourier transform.

Introduction	
00	
•	
0	

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivations

- For a non-commutative group the representations/characters provide an analogue of the Fourier transform.
- Random walks on non-commutative groups: how many card shufflings are necessary to mix the cards?

Introduction	
00	
•	
0	

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Motivations

- For a non-commutative group the representations/characters provide an analogue of the Fourier transform.
- Random walks on non-commutative groups: how many card shufflings are necessary to mix the cards?
- Can we learn something about S_{∞} from studying representations of S_n in the limit $n \to \infty$?

Introduction	
00	
•	
0	

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Motivations

- For a non-commutative group the representations/characters provide an analogue of the Fourier transform.
- Random walks on non-commutative groups: how many card shufflings are necessary to mix the cards?
- Can we learn something about S_{∞} from studying representations of S_n in the limit $n \to \infty$?
- Speed of quantum computers [Moore, Russell & Śniady]: Can we have encryption protocols which are secure against hacking with a quantum computer?

Introduction	
00	
•	
0	

Characters, free probability and random matrices

Motivations

- For a non-commutative group the representations/characters provide an analogue of the Fourier transform.
- Random walks on non-commutative groups: how many card shufflings are necessary to mix the cards?
- Can we learn something about S_{∞} from studying representations of S_n in the limit $n \to \infty$?
- Speed of quantum computers [Moore, Russell & Śniady]: Can we have encryption protocols which are secure against hacking with a quantum computer?

ask me about it during coffee break!

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Int	rodı	uctio	on
00			
0			

Characters, free probability and random matrices 000 0000 0000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi \mid}$$

Introd	luctio
00	

Stanley-Féray character formula o o ooooo

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \;|\pi|}$$

Notation:

• $|\pi|$ is the minimal number of factors to write π as a product of transpositions,

Introd	uctior
00	

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \;|\pi|}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,

Intro	ducti	or
~~		

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \;|\pi|}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,
- *n* is the number of boxes of λ,

Int	rodı	uctio	on
00			
0			

Characters, free probability and random matrices 000 0000 0000

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi \mid}$$

Introduc	tio
00	
0	

Characters, free probability and random matrices

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi \mid}$$

For balanced Young diagrams $r(\lambda), c(\lambda) \approx C\sqrt{n}$ therefore

 $|\chi^{\lambda}(\pi)| \leq q^{|\pi|}.$

Introduct	ic
00	
0	

Stanley-Féray character formula D D DOOOO

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi \mid}$$

For balanced Young diagrams $r(\lambda), c(\lambda) \approx C\sqrt{n}$ therefore

$$|\chi^{\lambda}(\pi)| \leq q^{|\pi|}.$$

Not good enough for asymptotics of quantum computers.

Introducti	0
00	
0	

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi \mid}$$

For balanced Young diagrams $r(\lambda), c(\lambda) \approx C\sqrt{n}$ therefore

$$|\chi^{\lambda}(\pi)| \leq q^{|\pi|}.$$

Not good enough for asymptotics of quantum computers. Can we have

$$|\chi^{\lambda}(\pi)| \leq \left(rac{\mathsf{const}}{\sqrt{n}}
ight)^{|\pi|}$$
?

Stanley-Féray character formula

Characters, free probability and random matrices

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Normalized characters

For a Young diagram λ with *n* boxes and $\pi \in S_l$ $(l \leq n)$ we define normalized character

$$\Sigma^{\lambda}(\pi) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdots (n-l+1)}_{l \text{ factors}} \chi^{\lambda}(\pi)$$

Stanley-Féray character formula

Characters, free probability and random matrices

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Normalized characters

For a Young diagram λ with *n* boxes and $\pi \in S_l$ $(l \leq n)$ we define normalized character

$$\Sigma^{\lambda}(\pi) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdots (n-l+1)}_{l \text{ factors}} \chi^{\lambda}(\pi)$$
$$\approx n^{l} \chi^{\lambda}(\pi).$$

Stanley-Féray character formula

Characters, free probability and random matrices

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Normalized characters

For a Young diagram λ with *n* boxes and $\pi \in S_l$ $(l \leq n)$ we define normalized character

$$\Sigma^{\lambda}(\pi) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdots (n-l+1)}_{l \text{ factors}} \chi^{\lambda}(\pi)$$
$$\approx n^{l} \chi^{\lambda}(\pi).$$

Important: we can think that $I = |\operatorname{supp} \pi|$.

Stanley-Féray character formula

Characters, free probability and random matrices

Stanley's character formula

Stanley-Féray character formula

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stanley's character formula

Theorem (Stanley 2001)

For a rectangular Young diagram $p \times q$ and $\pi \in S_l$ (where $l \leq pq$)

$$\Sigma^{p \times q}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} q^{|\mathcal{C}(\sigma_1)|} p^{|\mathcal{C}(\sigma_2)|},$$

where $|C(\sigma_i)|$ is the number of cycles of σ_i .

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stanley-Féray character formula

Theorem (Féray 2006)

For a Young diagram λ with n boxes and $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where $N^{\lambda}(\sigma_1, \sigma_2)$ is decribed in the following.

Stanley-Féray character formula O O O O O O Characters, free probability and random matrices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Colorings of permutations

• σ_1, σ_2 are permutations;

Introduction
00
0
0

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;

Introduction
00
0
0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

Introduction
00
0
0

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

- coloring is compatible with a Young diagram λ

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},\ h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

 coloring is compatible with a Young diagram λ if for any cycles c₁ ∈ C(σ₁), c₂ ∈ C(σ₂) with non-empty intersection

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

• coloring is compatible with a Young diagram λ if for any cycles $c_1 \in C(\sigma_1)$, $c_2 \in C(\sigma_2)$ with non-empty intersection the box in column $h_1(c_1)$ and row $h_2(c_2)$ belongs to λ .
Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

• coloring is compatible with a Young diagram λ if for any cycles $c_1 \in C(\sigma_1)$, $c_2 \in C(\sigma_2)$ with non-empty intersection the box in column $h_1(c_1)$ and row $h_2(c_2)$ belongs to λ .

 N^λ(σ₁, σ₂) denotes the number of the colorings of σ₁, σ₂ which are compatible with λ.

roduction	Stanley-Féray character formula
)	0
	0
	00000

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Colorings: toy example

Factorization $(1,2) = \underbrace{(1)(2)}_{\sigma_1} \cdot \underbrace{(1,2)}_{\sigma_2}$. Coloring compatible with λ :

roduction	Stanley-Féray character formula
	0
	0
	0000

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ : σ_2

 σ_1

roduction	Stanley-Féray character formula
)	0
	0
	00000

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Colorings: toy example

Factorization $(1,2) = \underbrace{(1)(2)}_{\sigma_1} \cdot \underbrace{(1,2)}_{\sigma_2}$. Coloring compatible with λ :

Introduction	Stanley-Féray character formula	Charac
00	0	000
0	0	0000
0	00000	0000

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

Introduction	Stanley-Féray character formula	Characters, free probability and
00	0	000
0	0	0000
0	00000	0000

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Stanley-Féray character formula	Characters, free probability an
00	0	000
0	0	0000
0	00000	0000

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Introduction	Stanley-Féray character formula	Characters, free probability and random
00	0	000
0	0	0000
0	00000	0000

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

where λ_i is the number of boxes in *i*-th row.

Introduction
00
0
0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Stanley-Féray character formula

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where

 $N^{\lambda}(\sigma_1, \sigma_2) =$ number of colourings of the cycles of σ_1 and σ_2 which are compatible with λ

Introduction	
00	
0	
0	

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Introduction	
00	
0	
0	

Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

• small number of summands if π is fixed;

Introduction	
00	
0	
0	

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ;

Introduction	
00	
0	
0	

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ;
- biggest contribution:

Introduction	
00	
0	
0	

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big

Introduction
00
0
0

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big \iff $|C(\sigma_1)| + |C(\sigma_2)|$ is big

Introduction	
00	
0	
0	

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_{I}$ (where $I \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big \iff $|C(\sigma_1)| + |C(\sigma_2)|$ is big $\iff |\sigma_1| + |\sigma_2|$ is small;

Introduction	
00	
0	
0	

Characters, free probability and random matrices

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big \iff $|C(\sigma_1)| + |C(\sigma_2)|$ is big $\iff |\sigma_1| + |\sigma_2|$ is small;
- free probability (next section);

Characters, free probability and random matrices •oo •ooo •ooo

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Kerov's transition measure

To a Young diagram λ we associate its transition measure μ_{λ} which is a probability measure on \mathbb{R} ,

Introduction
00
0
0

Characters, free probability and random matrices •oo •ooo •ooo

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Kerov's transition measure

To a Young diagram λ we associate its transition measure μ_{λ} which is a probability measure on \mathbb{R} , the spectral measure of the matrix

$$\begin{bmatrix} 0 & \rho^{\lambda}(1,2) & \cdots & \rho^{\lambda}(1,n) & 1 \\ \rho^{\lambda}(2,1) & 0 & \cdots & \rho^{\lambda}(2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho^{\lambda}(n,1) & \rho^{\lambda}(n,2) & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix}$$

Characters, free probability and random matrices $O \bullet O$

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Characters, free probability and random matrices ○●○ ○○○○ ○○○○

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k) = R_{k+1}^{\lambda} + (lower \ degree \ terms)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

$$\Sigma^{\lambda}(1,2,\ldots,k)= \mathsf{R}_{k+1}^{\lambda}+(\textit{lower degree terms})$$

Like in the random matrix theory free cumulants are the right quantities.

Characters, free probability and random matrices ○●○ ○○○○ ○○○○

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k) = R_{k+1}^{\lambda} + (lower \ degree \ terms)$

Characters, free probability and random matrices ○●○ ○○○○ ○○○○

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k)=R_{k+1}^{\lambda}+$ (lower degree terms)

$$\Sigma^\lambda(1,2,\ldots,k) = \sum_{\substack{\sigma_1,\sigma_2\in \mathcal{S}_k\ \sigma_1\sigma_2=(1,2,\ldots,k)}} (-1)^{|\sigma_1|} \; \mathit{N}^\lambda(\sigma_1,\sigma_2) =$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k)=R_{k+1}^{\lambda}+$ (lower degree terms)

$$\Sigma^{\lambda}(1, 2, \dots, k) = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k)}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2) = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, \dots, k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2) + (\text{lower degree terms})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k) = R_{k+1}^{\lambda} + (lower \ degree \ terms)$

$$\Sigma^{\lambda}(1, 2, \dots, k) = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k)}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2) = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, \dots, k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2) + (\text{lower degree terms})$$

Introduction 00 0 Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices

New formula for free cumulants 1

Corollary

$$R_{k+1}^{\lambda} = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, \dots, k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where the sum runs over minimal factorizations of a cycle.

Introduction
00
0
0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

New formula for free cumulants 1

Corollary

$$R_{k+1}^{\lambda} = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, \dots, k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where the sum runs over minimal factorizations of a cycle. Minimal factorizations of (1, ..., k) = planar rooted trees with k + 1 vertices!

Introduction
00
0
0

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random matrices...

For a Young diagram λ we consider a random matrix T_{λ} .

 $g_{i,j}$ are independent standard complex Gaussian

Introduction	
00	
0	
0	

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Random matrices...

For a Young diagram λ we consider a random matrix T_{λ} .

 $g_{i,j}$ are independent standard complex Gaussian

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{I},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Introduction
00
0
0

Characters, free probability and random matrices

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Random matrices and characters

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{l},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Introduction 00 0 Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{I},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Corollary

$$\left|\Sigma^{\lambda}(\pi)
ight|\leq\mathbb{E}ig[\operatorname{\mathsf{Tr}}(\mathit{T}_{\lambda}\mathit{T}_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{\mathsf{Tr}}(\mathit{T}_{\lambda}\mathit{T}_{\lambda}^{\star})^{l_{k}}ig]$$

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{I},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Introduction 00 0 Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices 000 000000

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Corollary

$$\left|\Sigma^{\lambda}(\pi)\right| \leq \mathbb{E}\left[\left.\mathsf{Tr}(\left.\mathcal{T}_{\lambda}\left.\mathcal{T}_{\lambda}^{\star}
ight)^{l_{1}}\cdots\mathsf{Tr}\left(\left.\mathcal{T}_{\lambda}\left.\mathcal{T}_{\lambda}^{\star}
ight)^{l_{k}}
ight]
ight]$$

Characters, free probability and random matrices $\circ \circ \circ$ $\circ \circ \circ \circ$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Corollary

$$\left|\Sigma^{\lambda}(\pi)\right| \leq \mathbb{E}\left[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}
ight]$$

Therefore the asymptotics of characters on long permutations $(l_1, l_2, \dots \to \infty)$ is related to asymptotics of the largest eigenvalues of $T_{\lambda}T_{\lambda}^{\star}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random matrices and circular operator

If λ is big then the Gaussian band matrix T_{λ} can be approximated by a circular operator T with amalgamation:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random matrices and circular operator

If λ is big then the Gaussian band matrix T_{λ} can be approximated by a circular operator T with amalgamation:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$

• noncommutative probability space $(\mathcal{A}, \mathbb{E} : \mathcal{A} \to \mathcal{D})$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Random matrices and circular operator

If λ is big then the Gaussian band matrix T_{λ} can be approximated by a circular operator T with amalgamation:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$

- noncommutative probability space $(\mathcal{A}, \mathbb{E} : \mathcal{A} \to \mathcal{D})$
- $\mathcal{D}=\mathcal{L}^1(\mathbb{R}_+)$ corresponds to diagonal matrices

Random matrices and circular operator

If λ is big then the Gaussian band matrix T_{λ} can be approximated by a circular operator T with amalgamation:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$

- noncommutative probability space $(\mathcal{A}, \mathbb{E} : \mathcal{A} \to \mathcal{D})$
- $\mathcal{D} = \mathcal{L}^1(\mathbb{R}_+)$ corresponds to diagonal matrices
- state $\phi: \mathcal{D} \to \mathbb{C}$, $\phi(f) = \int_0^\infty f(t) dt$ corresponds to trace

Stanley-Féray character formula 0 0 00000

T:

Characters, free probability and random matrices

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Character and circular operator

covariance of

$$\begin{bmatrix} k(T, f \ T^*) \end{bmatrix} (s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T^*, f \ T) \end{bmatrix} (s) = \int_{(s,t)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T, f \ T) \end{bmatrix} (s) = 0,$$
$$\begin{bmatrix} k(T^*, f \ T^*) \end{bmatrix} (s) = 0.$$

Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices $\circ\circ\circ$ $\circ\circ\circ\circ$ $\circ\circ\circ\circ\circ$

Character and circular operator

covariance of modified T:

$$\begin{bmatrix} k(T, f \ T^*) \end{bmatrix}(s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T^*, f \ T) \end{bmatrix}(s) = (-1) \int_{(s,t)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T, f \ T) \end{bmatrix}(s) = 0,$$
$$\begin{bmatrix} k(T^*, f \ T^*) \end{bmatrix}(s) = 0.$$

Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices $\circ\circ\circ$ $\circ\circ\circ\circ$ $\circ\circ\circ\circ\circ$

Character and circular operator

covariance of modified T:

$$[k(T, f \ T^*)](s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$

$$[k(T^*, f \ T)](s) = (-1) \int_{(s,t)\in\lambda} f(t) \ dt,$$

$$[k(T, f \ T)](s) = 0,$$

$$[k(T^*, f \ T^*)](s) = 0.$$

Theorem

$$R_{k+1}^{\lambda} = \phi\big[(TT^{\star})^k\big]$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics of characters.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics of characters.

Theorem (Vershik-Kerov 1985)

For a Young diagram λ with n boxes

$$\chi^{\lambda}(1,2,\ldots,k) \approx \sum_{j} \left(\frac{\lambda_{j}}{n}\right)^{k} - \sum_{j} \left(-\frac{\lambda_{j}'}{n}\right)^{k}$$

holds asymptotically, for $n \to \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics of characters.

Theorem (Vershik-Kerov 1985)

For a Young diagram λ with n boxes

$$\chi^{\lambda}(1,2,\ldots,k) \approx \sum_{j} \left(\frac{\lambda_{j}}{n}\right)^{k} - \sum_{j} \left(-\frac{\lambda_{j}'}{n}\right)^{k}$$

holds asymptotically, for $n \to \infty$.

Stanley-Féray formula: new one-line proof and estimate for error term

Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

New bounds for characters

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any Young diagram λ with n boxes

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \;|\pi|}$$

Theorem (Féray–Śniady 2007)

There exists a constant C such that for any Young diagram λ with n boxes

$$|\chi^{\lambda}(\pi)| \leq \left[C \max\left(rac{r(\lambda)}{n}, rac{c(\lambda)}{n}, rac{|\pi|}{n}
ight)
ight]^{|\pi|}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What happens for very long permutations?

Question

Suppose that λ has *n* boxes, permutation π is long: $|\pi| = O(n)$, Young diagram is balanced: $r(\lambda), c(\lambda) = O(\sqrt{n})$.

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

What happens for very long permutations?

Question

Suppose that λ has *n* boxes, permutation π is long: $|\pi| = O(n)$, Young diagram is balanced: $r(\lambda), c(\lambda) = O(\sqrt{n})$.

Which estimate is more accurate?

$$\left|\chi^{\lambda}(\pi)\right| \approx \left(\frac{C}{\sqrt{n}}\right)^{|\pi|} \quad \text{or} \quad \left|\chi^{\lambda}(\pi)\right| \approx q^{|\pi|}$$

for some 0 < q < 1?

Characters, free probability and random matrices

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

What happens for very long permutations?

Question

Suppose that λ has *n* boxes, permutation π is long: $|\pi| = O(n)$, Young diagram is balanced: $r(\lambda), c(\lambda) = O(\sqrt{n})$.

Which estimate is more accurate?

$$\left|\chi^{\lambda}(\pi)\right| \approx \left(\frac{C}{\sqrt{n}}\right)^{|\pi|} \quad \text{or} \quad \left|\chi^{\lambda}(\pi)\right| \approx q^{|\pi|}$$

for some 0 < q < 1?

We do not know, please help!

Stanley-Féray character formula 0 0 00000 Characters, free probability and random matrices

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Bibliography

🔋 Valentin Féray, Piotr Śniady.

Asymptotics of characters of symmetric groups related to Stanley-Féray character formula arXiv:math.RT/0701051

Cristopher Moore, Alexander Russell, Piotr Śniady. On the impossibility of a quantum sieve algorithm for graph isomorphism: unconditional results.

arXiv:quant-ph/0612089