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Representations of Sn

Our favorite group today is the symmetric group Sn.

Representation of Sn is a homomorphism ρ : Sn → End(V ), where
V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Irreducible representations of Sn are indexed by Young diagrams
with n boxes.

What happens with representations of Sn when n → ∞?
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Characters of symmetric groups

For a Young diagram λ and irreducible representation ρλ we define
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Characters of symmetric groups

For a Young diagram λ and irreducible representation ρλ we define
the character χλ : Sn → R by

χλ(π) = tr ρλ(π) =
Tr ρλ(π)

Tr ρλ(e)
for π ∈ Sn.

A lot of questions concerning (representations of) Sn can be
reduced to questions on characters.
Main problem: asymptotics of characters of Sn when n → ∞.
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Motivations

• For a non-commutative group the representations/characters
provide an analogue of the Fourier transform.

• Random walks on non-commutative groups:
how many card shufflings are necessary to mix the cards?

• Can we learn something about S∞ from studying
representations of Sn in the limit n → ∞?

• Speed of quantum computers [Moore, Russell & Śniady]:
Can we have encryption protocols which are secure against
hacking with a quantum computer?

ask me about it during coffee break!
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Roichman’s inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any
π ∈ Sn

|χλ(π)| ≤
[

max

(
r(λ)

n
,
c(λ)

n
, q

)]b |π|

Notation:

• |π| is the minimal number of factors to write π as a product
of transpositions,

• r(λ), c(λ) is the number of rows/columns of λ,

• n is the number of boxes of λ,
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Roichman’s inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any
π ∈ Sn

|χλ(π)| ≤
[

max

(
r(λ)

n
,
c(λ)

n
, q

)]b |π|

For balanced Young diagrams r(λ), c(λ) ≈ C
√

n therefore

|χλ(π)| ≤ q|π|.

Not good enough for asymptotics of quantum computers.
Can we have

|χλ(π)| ≤
(

const√
n

)|π|

?
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Normalized characters

For a Young diagram λ with n boxes and π ∈ Sl (l ≤ n) we define
normalized character

Σλ(π) = n · (n − 1) · (n − 2) · · · (n − l + 1)
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l factors

χλ(π)
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Normalized characters

For a Young diagram λ with n boxes and π ∈ Sl (l ≤ n) we define
normalized character

Σλ(π) = n · (n − 1) · (n − 2) · · · (n − l + 1)
︸ ︷︷ ︸

l factors

χλ(π)

≈ nl χλ(π).

Important: we can think that l = | suppπ|.
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Stanley’s character formula

Theorem (Stanley 2001)

For a rectangular Young diagram p × q and π ∈ Sl (where l ≤ pq)

Σp×q(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| q|C(σ1)| p|C(σ2)|,

where |C (σi )| is the number of cycles of σi .

p × q =

q boxes

p
bo

xe
s
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Stanley-Féray character formula

Theorem (Féray 2006)

For a Young diagram λ with n boxes and π ∈ Sl (where l ≤ n)

Σλ(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2),

where Nλ(σ1, σ2) is decribed in the following.
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Colorings of permutations

• σ1, σ2 are permutations;

• C (σ1),C (σ2) are the sets of their cycles;

• coloring of σ1, σ2 is a pair of functions

h1 :C (σ1) → N = {numbers of columns},
h2 :C (σ2) → N = {numbers of rows};

• coloring is compatible with a Young diagram λ

if for any cycles c1 ∈ C (σ1), c2 ∈ C (σ2) with non-empty
intersection
the box in column h1(c1) and row h2(c2) belongs to λ.

• Nλ(σ1, σ2) denotes the number of the colorings of σ1, σ2

which are compatible with λ.
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Colorings: toy example

Factorization (1, 2) = (1)(2)
︸ ︷︷ ︸

σ1

· (1, 2)
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σ2

. Coloring compatible with λ:

1 2 3 4 5 6 7 8

1

2

3

4
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Colorings: toy example

Factorization (1, 2) = (1)(2)
︸ ︷︷ ︸

σ1

· (1, 2)
︸ ︷︷ ︸

σ2

. Coloring compatible with λ:

1 2 3 4 5 6 7 8

1

2

3

4

Nλ
(
(1)(2), (1, 2)

)
=
∑

i

(λi )
2,

where λi is the number of boxes in i -th row.
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Stanley-Féray character formula

Theorem (Féray 2006)

For any Young diagram λ and a permutation π ∈ Sl (where l ≤ n)

Σλ(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2),

where

Nλ(σ1, σ2) = number of colourings of the cycles of σ1 and σ2

which are compatible with λ
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For any Young diagram λ and a permutation π ∈ Sl (where l ≤ n)

Σλ(π) =
∑
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• biggest contribution: Nλ(σ1, σ2) is big ⇐⇒
|C (σ1)| + |C (σ2)| is big
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Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation π ∈ Sl (where l ≤ n)

Σλ(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2).

It is nice because:

• small number of summands if π is fixed;

• each summand is directly related to the shape of λ;

• biggest contribution: Nλ(σ1, σ2) is big ⇐⇒
|C (σ1)| + |C (σ2)| is big ⇐⇒ |σ1| + |σ2| is small;
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Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation π ∈ Sl (where l ≤ n)

Σλ(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2).

It is nice because:

• small number of summands if π is fixed;

• each summand is directly related to the shape of λ;

• biggest contribution: Nλ(σ1, σ2) is big ⇐⇒
|C (σ1)| + |C (σ2)| is big ⇐⇒ |σ1| + |σ2| is small;

• free probability (next section);
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Kerov’s transition measure

To a Young diagram λ we associate its transition measure µλ

which is a probability measure on R,
the spectral measure of the matrix










0 ρλ(1, 2) · · · ρλ(1, n) 1
ρλ(2, 1) 0 · · · ρλ(2, n) 1

...
...

. . .
...

...
ρλ(n, 1) ρλ(n, 2) · · · 0 1

1 1 · · · 1 0









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Denote Rλ
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λ) the free cumulant of µλ.
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The normalized character on a cycle is asymptotically given by

Σλ(1, 2, . . . , k) = Rλ
k+1 + (lower degree terms)
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Free cumulants of transition measure

Denote Rλ
i = Ri(µ

λ) the free cumulant of µλ.

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

Σλ(1, 2, . . . , k) = Rλ
k+1 + (lower degree terms)

Like in the random matrix theory free cumulants are the right
quantities.



Introduction Stanley-Féray character formula Characters, free probability and random matrices

Free cumulants of transition measure

Denote Rλ
i = Ri(µ

λ) the free cumulant of µλ.

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

Σλ(1, 2, . . . , k) = Rλ
k+1 + (lower degree terms)
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Free cumulants of transition measure

Denote Rλ
i = Ri(µ

λ) the free cumulant of µλ.

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

Σλ(1, 2, . . . , k) = Rλ
k+1 + (lower degree terms)

Σλ(1, 2, . . . , k) =
∑

σ1,σ2∈Sk

σ1σ2=(1,2,...,k)

(−1)|σ1| Nλ(σ1, σ2) =

∑

σ1,σ2∈Sk

σ1σ2=(1,2,...,k)
|σ1|+|σ2|=|(1,2,...,k)|

(−1)|σ1| Nλ(σ1, σ2) + (lower degree terms)
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New formula for free cumulants 1

Corollary

Rλ
k+1 =

∑

σ1,σ2∈Sk

σ1σ2=(1,2,...,k)
|σ1|+|σ2|=|(1,2,...,k)|

(−1)|σ1| Nλ(σ1, σ2),

where the sum runs over minimal factorizations of a cycle.
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New formula for free cumulants 1

Corollary

Rλ
k+1 =

∑

σ1,σ2∈Sk

σ1σ2=(1,2,...,k)
|σ1|+|σ2|=|(1,2,...,k)|

(−1)|σ1| Nλ(σ1, σ2),

where the sum runs over minimal factorizations of a cycle.

Minimal factorizations of (1, . . . , k) = planar rooted trees with
k + 1 vertices!
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Random matrices. . .
For a Young diagram λ we consider a random matrix Tλ.

λ = Tλ =










...
...

...
...

0 0 0 0 · · ·
g3,1 g3,2 0 0 · · ·
g2,1 g2,2 0 0 · · ·
g1,1 g1,2 g1,3 0 · · ·










gi ,j are independent standard complex Gaussian
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Random matrices. . .
For a Young diagram λ we consider a random matrix Tλ.

λ = Tλ =










...
...

...
...

0 0 0 0 · · ·
g3,1 g3,2 0 0 · · ·
g2,1 g2,2 0 0 · · ·
g1,1 g1,2 g1,3 0 · · ·










gi ,j are independent standard complex Gaussian

Moments of random matrices:

E
[
Tr(TλT ⋆

λ)l1 · · ·Tr(TλT ⋆
λ)lk
]

=
∑

σ1,σ2∈Sl ,
σ1σ2=π

Nλ(σ1, σ2).

where π is a permutation with a cycle structure (l1, . . . , lk).
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Random matrices and characters
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Random matrices and characters
Characters of symmetric groups:

Σλ(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2).

Corollary

∣
∣Σλ(π)

∣
∣ ≤ E

[
Tr(TλT ⋆

λ)l1 · · ·Tr(TλT ⋆
λ)lk
]

Moments of random matrices:

E
[
Tr(TλT ⋆

λ)l1 · · ·Tr(TλT ⋆
λ)lk
]

=
∑

σ1,σ2∈Sl ,
σ1σ2=π

Nλ(σ1, σ2).

where π is a permutation with a cycle structure (l1, . . . , lk).
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Random matrices and characters
Characters of symmetric groups:

Σλ(π) =
∑

σ1,σ2∈Sl ,
σ1σ2=π

(−1)|σ1| Nλ(σ1, σ2).

Corollary

∣
∣Σλ(π)

∣
∣ ≤ E

[
Tr(TλT ⋆

λ)l1 · · ·Tr(TλT ⋆
λ)lk
]

Therefore the asymptotics of characters on long permutations
(l1, l2, · · · → ∞) is related to asymptotics of the largest eigenvalues
of TλT ⋆

λ .
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Random matrices and circular operator

If λ is big then the Gaussian band matrix Tλ can be approximated
by a circular operator T with amalgamation:

E tr
[
(TλT ⋆

λ)n
]
≈ φ

[
(TT ⋆)n

]
.
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• noncommutative probability space (A, E : A → D)
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Random matrices and circular operator

If λ is big then the Gaussian band matrix Tλ can be approximated
by a circular operator T with amalgamation:

E tr
[
(TλT ⋆

λ)n
]
≈ φ

[
(TT ⋆)n

]
.

• noncommutative probability space (A, E : A → D)

• D = L1(R+) corresponds to diagonal matrices

• state φ : D → C, φ(f ) =
∫∞
0 f (t)dt corresponds to trace
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Character and circular operator

covariance of T :

[
k(T , f T ⋆)

]
(s) =

∫

(t,s)∈λ

f (t) dt,

[
k(T ⋆, f T )

]
(s) =

∫

(s,t)∈λ

f (t) dt,

[
k(T , f T )

]
(s) = 0,

[
k(T ⋆, f T ⋆)

]
(s) = 0.
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Character and circular operator

covariance of modified T :

[
k(T , f T ⋆)

]
(s) =

∫

(t,s)∈λ

f (t) dt,

[
k(T ⋆, f T )

]
(s) = (−1)

∫

(s,t)∈λ

f (t) dt,

[
k(T , f T )

]
(s) = 0,

[
k(T ⋆, f T ⋆)

]
(s) = 0.
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Character and circular operator

covariance of modified T :

[
k(T , f T ⋆)

]
(s) =

∫

(t,s)∈λ

f (t) dt,

[
k(T ⋆, f T )

]
(s) = (−1)

∫

(s,t)∈λ

f (t) dt,

[
k(T , f T )

]
(s) = 0,

[
k(T ⋆, f T ⋆)

]
(s) = 0.

Theorem

Rλ
k+1 = φ

[
(TT ⋆)k

]



Introduction Stanley-Féray character formula Characters, free probability and random matrices

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics
of characters.
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Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics
of characters.

Theorem (Vershik–Kerov 1985)

For a Young diagram λ with n boxes

χλ(1, 2, . . . , k) ≈
∑

j

(
λj

n

)k

−
∑

j

(

−
λ′

j

n

)k

holds asymptotically, for n → ∞.
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Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics
of characters.

Theorem (Vershik–Kerov 1985)

For a Young diagram λ with n boxes

χλ(1, 2, . . . , k) ≈
∑

j

(
λj

n

)k

−
∑

j

(

−
λ′

j

n

)k

holds asymptotically, for n → ∞.

Stanley-Féray formula: new one-line proof and estimate for error
term
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New bounds for characters

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any
Young diagram λ with n boxes

|χλ(π)| ≤
[

max

(
r(λ)

n
,
c(λ)

n
, q

)]b |π|

Theorem (Féray–Śniady 2007)

There exists a constant C such that for any Young diagram λ with
n boxes

|χλ(π)| ≤
[

C max

(
r(λ)

n
,
c(λ)

n
,
|π|
n

)]|π|
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What happens for very long permutations?

Question
Suppose that λ has n boxes,
permutation π is long: |π| = O(n),
Young diagram is balanced: r(λ), c(λ) = O(

√
n).
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What happens for very long permutations?

Question
Suppose that λ has n boxes,
permutation π is long: |π| = O(n),
Young diagram is balanced: r(λ), c(λ) = O(

√
n).

Which estimate is more accurate?

∣
∣
∣χ

λ(π)
∣
∣
∣ ≈

(
C√
n

)|π|

or
∣
∣
∣χ

λ(π)
∣
∣
∣ ≈ q|π|

for some 0 < q < 1?
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What happens for very long permutations?

Question
Suppose that λ has n boxes,
permutation π is long: |π| = O(n),
Young diagram is balanced: r(λ), c(λ) = O(

√
n).

Which estimate is more accurate?

∣
∣
∣χ

λ(π)
∣
∣
∣ ≈

(
C√
n

)|π|

or
∣
∣
∣χ

λ(π)
∣
∣
∣ ≈ q|π|

for some 0 < q < 1?

We do not know, please help!
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