Asymptotics of symmetric groups representations, random matrices and free probability (joint work with Valentin Féray)

Piotr Śniady

University of Wroclaw

Outline

2 Stanley-Féray character formula

Obaracters, free probability and random matrices

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Outline

Introduction

- Characters
- Motivations
- Roichman's inequality

Stanley-Féray character formula

3 Characters, free probability and random matrices

	Introduction	
	Stanley-Féray character formula	
Characters, f	ee probability and random matrices	

Characters Motivations Roichman's inequality

Representations of S_n

Our favorite group today is the symmetric group S_n .

A 10

医下子 医

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

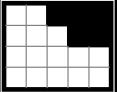
Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Irreducible representations of S_n are indexed by Young diagrams with n boxes.



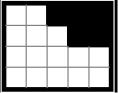
Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequalit

Our favorite group today is the symmetric group S_n .

Representation of S_n is a homomorphism $\rho : S_n \to \text{End}(V)$, where V is a finite-dimensional (complex) vector space.

Representation is irreducible if V has no invariant subspaces.

Irreducible representations of S_n are indexed by Young diagrams with n boxes.



What happens with representations of S_n when $n \to \infty$?

Characters Motivations Roichman's inequality

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi)$$
 for $\pi \in S_n$.

3 N 4

A 10

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi) = rac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{Tr} \rho^{\lambda}(e)} \qquad ext{for } \pi \in \mathcal{S}_n.$$

A 10

Characters Stanley-Féray character formula Characters, free probability and random matrices Roichman's ineq

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi) = rac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{Tr} \rho^{\lambda}(e)} \qquad ext{for } \pi \in \mathcal{S}_n.$$

A lot of questions concerning (representations of) S_n can be reduced to questions on characters.

Characters of symmetric groups

For a Young diagram λ and irreducible representation ρ^{λ} we define the character $\chi^{\lambda}: S_n \to \mathbb{R}$ by

$$\chi^{\lambda}(\pi) = \operatorname{tr} \rho^{\lambda}(\pi) = rac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{Tr} \rho^{\lambda}(e)} \qquad ext{for } \pi \in \mathcal{S}_n.$$

A lot of questions concerning (representations of) S_n can be reduced to questions on characters.

Main problem: asymptotics of characters of S_n when $n \to \infty$.

Motivation 1: non-commutative Fourier transform...

If $f \in \mathbb{C}[S_n]$ we define a function \hat{f} on Young diagrams with n boxes:

$$\hat{f}(\lambda) = \rho^{\lambda}(f) \in \operatorname{End}(V_{\lambda}).$$

Motivation 1: non-commutative Fourier transform...

If $f \in \mathbb{C}[S_n]$ we define a function \hat{f} on Young diagrams with n boxes:

$$\hat{f}(\lambda) = \rho^{\lambda}(f) \in \operatorname{End}(V_{\lambda}).$$

Analogue of Fourier transform because $\widehat{f * g} = \widehat{f} \cdot \widehat{g}$.

Motivation 1: non-commutative Fourier transform...

If $f \in \mathbb{C}[S_n]$ we define a function \hat{f} on Young diagrams with n boxes:

$$\hat{f}(\lambda) = \rho^{\lambda}(f) \in \operatorname{End}(V_{\lambda}).$$

Analogue of Fourier transform because $\widehat{f * g} = \hat{f} \cdot \hat{g}$.

If $f(\pi)$ depends only on the conjugacy class of π then

$$\hat{f}(\lambda) =
ho^{\lambda}(f) = \sum_{\pi \in S_n} f(\pi) \chi^{\lambda}(\pi) \, \operatorname{Id}.$$

Motivation 1: non-commutative Fourier transform...

If $f \in \mathbb{C}[S_n]$ we define a function \hat{f} on Young diagrams with n boxes:

$$\hat{f}(\lambda) = \rho^{\lambda}(f) \in \operatorname{End}(V_{\lambda}).$$

Analogue of Fourier transform because $\widehat{f * g} = \hat{f} \cdot \hat{g}$.

If $f(\pi)$ depends only on the conjugacy class of π then

$$\hat{f}(\lambda) =
ho^{\lambda}(f) = \sum_{\pi \in S_n} f(\pi) \chi^{\lambda}(\pi) \, \operatorname{Id}.$$

Non-commutative Fourier transform depends on characters.

Motivation 1: non-commutative Fourier transform...

Let $\pi_1, \pi_2, \dots \in S_n$ be random permutations.

Motivation 1: non-commutative Fourier transform...

Let $\pi_1, \pi_2, \dots \in S_n$ be random permutations.

What is the minimal value of k such that the distribution $\pi_1 \cdots \pi_k$ is 'almost' uniform on S_n ?

Motivation 1: non-commutative Fourier transform...

Let $\pi_1, \pi_2, \dots \in S_n$ be random permutations.

What is the minimal value of k such that the distribution $\pi_1 \cdots \pi_k$ is 'almost' uniform on S_n ? Asymptotically, when $n \to \infty$?

Motivation 1: non-commutative Fourier transform...

Let $\pi_1, \pi_2, \dots \in S_n$ be random permutations.

What is the minimal value of k such that the distribution $\pi_1 \cdots \pi_k$ is 'almost' uniform on S_n ? Asymptotically, when $n \to \infty$?

Diaconis & Shahshahani: speed of convergence of $\pi_1 \cdots \pi_k$ to the uniform distribution depends on the asymptotics of characters $\chi^{\lambda}(\pi)$.

Motivation 1: non-commutative Fourier transform...

Let $\pi_1, \pi_2, \dots \in S_n$ be random permutations.

What is the minimal value of k such that the distribution $\pi_1 \cdots \pi_k$ is 'almost' uniform on S_n ? Asymptotically, when $n \to \infty$?

Diaconis & Shahshahani: speed of convergence of $\pi_1 \cdots \pi_k$ to the uniform distribution depends on the asymptotics of characters $\chi^{\lambda}(\pi)$.

Proof: use non-commutative Fourier transform.

Motivation 2: quantum computers

Cryptography: can we find problems which are hard for classical and quantum computers?

医下子 医

A 10

Motivation 2: quantum computers

Cryptography: can we find problems which are hard for classical and quantum computers?

Moore & Russell: all currently known quick quantum algorithms for graph isomorphism problem

→ Ξ →

A 10

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequ

Motivation 2: quantum computers

Cryptography: can we find problems which are hard for classical and quantum computers?

Moore & Russell: all currently known quick quantum algorithms for graph isomorphism problem are equivalent to playing blackjack in a quantum casino (instead of cards we use irreducible representations of S_n).

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequ

Motivation 2: quantum computers

Cryptography: can we find problems which are hard for classical and quantum computers?

Moore & Russell: all currently known quick quantum algorithms for graph isomorphism problem are equivalent to playing blackjack in a quantum casino (instead of cards we use irreducible representations of S_n). Speed depends on asymptotics of characters $\chi^{\lambda}(\pi)$ of symmetric groups.

Motivation 2: quantum computers

Cryptography: can we find problems which are hard for classical and quantum computers?

Moore & Russell: all currently known quick quantum algorithms for graph isomorphism problem are equivalent to playing blackjack in a quantum casino (instead of cards we use irreducible representations of S_n). Speed depends on asymptotics of characters $\chi^{\lambda}(\pi)$ of symmetric groups.

ask me about it during coffee break!

・ 同 ト ・ ヨ ト ・ ヨ ト

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^\lambda(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi}$$

Notation:

• $|\pi|$ is the minimal number of factors to write π as a product of transpositions,

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,
- *n* is the number of boxes of λ,

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,
- *n* is the number of boxes of λ,

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,
- n is the number of boxes of λ,

Proof: Murnaghan-Nakayama rule.

Introduction	Characters
Stanley-Féray character formula	Motivations
Characters, free probability and random matrices	Roichman's inequality

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any $\pi \in S_n$

$$|\chi^\lambda(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \mid \pi}$$

Notation:

- $|\pi|$ is the minimal number of factors to write π as a product of transpositions,
- $r(\lambda)$, $c(\lambda)$ is the number of rows/columns of λ ,
- n is the number of boxes of λ,

Proof: Murnaghan-Nakayama rule.

Roichman's estimate is not good enough for asymptotics of quantum computers.

Introduction Normalized characters Stanley-Féray character formula Characters, free probability and random matrices Stanley-Féray character formula

Outline

Introduction

2 Stanley-Féray character formula

- Normalized characters
- Stanley's character formula
- Stanley-Féray character formula

3 Characters, free probability and random matrices

Normalized characters Stanley's character formula Stanley-Féray character formula

Normalized characters

For a Young diagram λ with *n* boxes and $\pi \in S_l$ $(l \leq n)$ we define normalized character

$$\Sigma^{\lambda}(\pi) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdots (n-l+1)}_{l \text{ factors}} \chi^{\lambda}(\pi)$$

< - 10 ▶

A B + A B +

Normalized characters Stanley's character formula Stanley-Féray character formula

Normalized characters

For a Young diagram λ with *n* boxes and $\pi \in S_l$ $(l \leq n)$ we define normalized character

$$\Sigma^{\lambda}(\pi) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdots (n-l+1)}_{l \text{ factors}} \chi^{\lambda}(\pi)$$
$$\approx n^{l} \chi^{\lambda}(\pi).$$

< - 10 ▶

A B + A B +

Normalized characters Stanley's character formula Stanley-Féray character formula

Normalized characters

For a Young diagram λ with *n* boxes and $\pi \in S_l$ $(l \leq n)$ we define normalized character

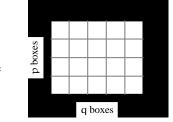
$$\Sigma^{\lambda}(\pi) = \underbrace{n \cdot (n-1) \cdot (n-2) \cdots (n-l+1)}_{l \text{ factors}} \chi^{\lambda}(\pi)$$
$$\approx n^{l} \chi^{\lambda}(\pi).$$

Important: we can think that $I = |\operatorname{supp} \pi|$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Normalized characters Stanley's character formula Stanley-Féray character formula

Stanley's character formula



 $p \times q =$

글 > - < 글 >

э

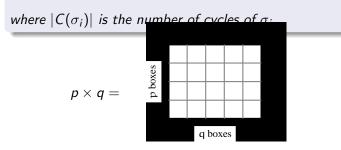
Normalized characters Stanley's character formula Stanley-Féray character formula

Stanley's character formula

Theorem (Stanley 2001)

For a rectangular Young diagram $p \times q$ and $\pi \in S_l$ (where $l \leq pq$)

$$\Sigma^{p \times q}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} q^{|\mathcal{C}(\sigma_1)|} p^{|\mathcal{C}(\sigma_2)|}$$



글 > - < 글 >

A 10

Normalized characters Stanley's character formula Stanley-Féray character formula

Stanley-Féray character formula

Theorem (Féray 2006)

For a Young diagram λ with n boxes and $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where $N^{\lambda}(\sigma_1, \sigma_2)$ is decribed in the following.

- 4 同 6 4 日 6 4 日 6

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

• σ_1, σ_2 are permutations;

- 4 同 6 4 日 6 4 日 6

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

- σ_1, σ_2 are permutations;
- $C(\sigma_1), C(\sigma_2)$ are the sets of their cycles;

- 4 同 ト 4 ヨ ト 4 ヨ ト

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

- σ_1, σ_2 are permutations;
- $C(\sigma_1), C(\sigma_2)$ are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

- σ_1, σ_2 are permutations;
- $C(\sigma_1), C(\sigma_2)$ are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},\ h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

 $\bullet\,$ coloring is compatible with a Young diagram λ

(4月) (4日) (4日)

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

 coloring is compatible with a Young diagram λ if for any cycles c₁ ∈ C(σ₁), c₂ ∈ C(σ₂) with non-empty intersection

イロト イポト イヨト イヨト

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

- σ_1, σ_2 are permutations;
- C(σ₁), C(σ₂) are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

• coloring is compatible with a Young diagram λ if for any cycles $c_1 \in C(\sigma_1)$, $c_2 \in C(\sigma_2)$ with non-empty intersection the box in column $h_1(c_1)$ and row $h_2(c_2)$ belongs to λ .

・ロッ ・雪 ・ ・ ヨ ・ ・

Normalized characters Stanley's character formula Stanley-Féray character formula

Colorings of permutations

- σ_1, σ_2 are permutations;
- $C(\sigma_1), C(\sigma_2)$ are the sets of their cycles;
- coloring of σ_1, σ_2 is a pair of functions

 $h_1: C(\sigma_1) \to \mathbb{N} = \{ \text{numbers of columns} \},$ $h_2: C(\sigma_2) \to \mathbb{N} = \{ \text{numbers of rows} \};$

 coloring is compatible with a Young diagram λ if for any cycles c₁ ∈ C(σ₁), c₂ ∈ C(σ₂) with non-empty intersection

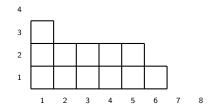
the box in column $h_1(c_1)$ and row $h_2(c_2)$ belongs to λ .

 N^λ(σ₁, σ₂) denotes the number of the colorings of σ₁, σ₂ which are compatible with λ.

・ロト ・同ト ・ヨト ・ヨト

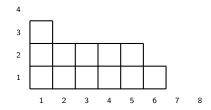
Colorings: toy example

Factorization $(1,2) = \underbrace{(1)(2)}_{\sigma_1} \cdot \underbrace{(1,2)}_{\sigma_2}$. Coloring compatible with λ :



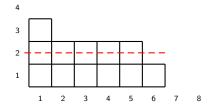
Colorings: toy example

Factorization $(1,2) = \underbrace{(1)(2)}_{\sigma_1} \cdot \underbrace{(1,2)}_{\sigma_2}$. Coloring compatible with λ :



Colorings: toy example

Factorization $(1,2) = \underbrace{(1)(2)}_{\sigma_1} \cdot \underbrace{(1,2)}_{\sigma_2}$. Coloring compatible with λ :

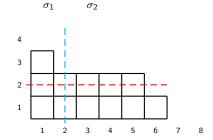


< 6 >

→ Ξ → < Ξ</p>

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

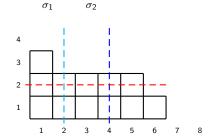


< 6 >

∃ → < ∃</p>

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

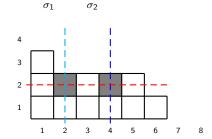


< A >

· < E > < E >

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :

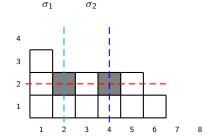


< A >

A B > A B >

Colorings: toy example

Factorization $(1,2) = (1)(2) \cdot (1,2)$. Coloring compatible with λ :



$$N^{\lambda}((1)(2), (1, 2)) = \sum_{i} (\lambda_{i})^{2},$$

where λ_i is the number of boxes in *i*-th row.

< 6 >

3.5

Normalized characters Stanley's character formula Stanley-Féray character formula

Stanley-Féray character formula

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where

 $N^{\lambda}(\sigma_1, \sigma_2) =$ number of colourings of the cycles of σ_1 and σ_2 which are compatible with λ

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

(日) (同) (三) (三)

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

• small number of summands if π is fixed;

- 4 同 6 4 日 6 4 日 6

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ ;

- 4 同 ト 4 ヨ ト 4 ヨ ト

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ ;
- biggest contribution:

- 4 同 ト 4 ヨ ト 4 ヨ ト

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big

- 4 同 6 4 日 6 4 日 6

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big $\iff |C(\sigma_1)| + |C(\sigma_2)|$ is big

| 4 同 1 4 三 1 4 三 1

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big $\iff |C(\sigma_1)| + |C(\sigma_2)|$ is big $\iff |\sigma_1| + |\sigma_2|$ is small;

・ロト ・同ト ・ヨト ・ヨト

Normalized characters Stanley's character formula Stanley-Féray character formula

Why is it so nice?

Theorem (Féray 2006)

For any Young diagram λ and a permutation $\pi \in S_l$ (where $l \leq n$)

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

It is nice because:

- small number of summands if π is fixed;
- each summand is directly related to the shape of λ ;
- biggest contribution: $N^{\lambda}(\sigma_1, \sigma_2)$ is big $\iff |C(\sigma_1)| + |C(\sigma_2)|$ is big $\iff |\sigma_1| + |\sigma_2|$ is small;
- free probability (next section);

Image: A math a math

|--|

Outline

Introduction

2 Stanley-Féray character formula

Obaracters, free probability and random matrices

- Free cumulants
- Random matrices and characters
- Estimates for characters

Free cumulants Random matrices and characters Estimates for characters

Transition measure

Kerov: to a Young diagram λ we associate its transition measure μ_{λ} which is a probability measure on \mathbb{R} , Introduction Free cumulants Stanley-Féray character formula Random matrices and characters Characters, free probability and random matrices Estimates for characters

Transition measure

Kerov: to a Young diagram λ we associate its transition measure μ_{λ} which is a probability measure on \mathbb{R} , the spectral measure of the matrix

$$\begin{bmatrix} 0 & \rho^{\lambda}(1,2) & \cdots & \rho^{\lambda}(1,n) & 1 \\ \rho^{\lambda}(2,1) & 0 & \cdots & \rho^{\lambda}(2,n) & 1 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ \rho^{\lambda}(n,1) & \rho^{\lambda}(n,2) & \cdots & 0 & 1 \\ 1 & 1 & \cdots & 1 & 0 \end{bmatrix}$$

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

프 () () ()

A 10

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

$$\Sigma^{\lambda}(1, 2, \dots, k) = R_{k+1}^{\lambda} + (\textit{lower degree terms})$$

- 4 同 2 4 日 2 4 日 2 4

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

$$\Sigma^{\lambda}(1, 2, \dots, k) = R_{k+1}^{\lambda} + (lower \ degree \ terms)$$

Like in the random matrix theory free cumulants are the right quantities.

(4月) (4日) (4日)

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

$$\Sigma^{\lambda}(1, 2, \dots, k) = R_{k+1}^{\lambda} + (\textit{lower degree terms})$$

- 4 同 2 4 日 2 4 日 2 4

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1, 2, \dots, k) = R_{k+1}^{\lambda} + (lower \ degree \ terms)$

$$\Sigma^\lambda(1,2,\ldots,k) = \sum_{\substack{\sigma_1,\sigma_2\in \mathcal{S}_k\ \sigma_1\sigma_2=(1,2,\ldots,k)}} (-1)^{|\sigma_1|} \; \mathsf{N}^\lambda(\sigma_1,\sigma_2) =$$

- * 同 * * ヨ * * ヨ * - ヨ

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k)=R_{k+1}^{\lambda}+(\textit{lower degree terms})$

$$\begin{split} \Sigma^{\lambda}(1,2,\ldots,k) &= \sum_{\substack{\sigma_{1},\sigma_{2}\in S_{k}\\\sigma_{1}\sigma_{2}=(1,2,\ldots,k)}} (-1)^{|\sigma_{1}|} \ N^{\lambda}(\sigma_{1},\sigma_{2}) = \\ &\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{k}\\\sigma_{1}\sigma_{2}=(1,2,\ldots,k)\\|\sigma_{1}|+|\sigma_{2}|=|(1,2,\ldots,k)|}} (-1)^{|\sigma_{1}|} \ N^{\lambda}(\sigma_{1},\sigma_{2}) + \text{(lower degree terms)} \end{split}$$

- 4 同 6 4 日 6 4 日 6 - 日

Free cumulants Random matrices and characters Estimates for characters

Free cumulants of transition measure

Denote $R_i^{\lambda} = R_i(\mu^{\lambda})$ the free cumulant of μ^{λ} .

Theorem (Biane 1998)

The normalized character on a cycle is asymptotically given by

 $\Sigma^{\lambda}(1,2,\ldots,k) = R^{\lambda}_{k+1} + (lower degree terms)$

$$\Sigma^{\lambda}(1, 2, ..., k) = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, ..., k)}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2) = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, ..., k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, ..., k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2) + (\text{lower degree terms})$$

- 4 同 6 4 日 6 4 日 6 - 日

Free cumulants Random matrices and characters Estimates for characters

New formula for free cumulants 1

Corollary

$$R_{k+1}^{\lambda} = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, ..., k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, ..., k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where the sum runs over minimal factorizations of a cycle.

- 4 同 2 4 日 2 4 日 2

Free cumulants Random matrices and characters Estimates for characters

New formula for free cumulants 1

Corollary

$$R_{k+1}^{\lambda} = \sum_{\substack{\sigma_1, \sigma_2 \in S_k \\ \sigma_1 \sigma_2 = (1, 2, \dots, k) \\ |\sigma_1| + |\sigma_2| = |(1, 2, \dots, k)|}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2),$$

where the sum runs over minimal factorizations of a cycle.

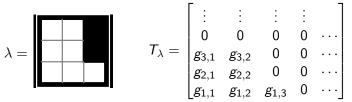
Minimal factorizations of (1, ..., k) = planar rooted trees with k + 1 vertices!

・ 同 ト ・ ヨ ト ・ ヨ ト

Stanley-Féray character formula Random matrices and characters Characters, free probability and random matrices Estimates for characters

Random matrices...

For a Young diagram λ we consider a random matrix T_{λ} .

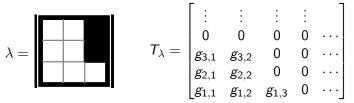


 $g_{i,j}$ are independent standard complex Gaussian

Introduction Free cumulants Stanley-Féray character formula Random matrices and characters Characters, free probability and random matrices Estimates for characters
--

Random matrices...

For a Young diagram λ we consider a random matrix T_{λ} .



 $g_{i,j}$ are independent standard complex Gaussian

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{l},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Free cumulants Random matrices and characters Estimates for characters

Random matrices and characters

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{l},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Free cumulants Random matrices and characters Estimates for characters

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{l},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Free cumulants Random matrices and characters Estimates for characters

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Corollary

$$\left|\Sigma^{\lambda}(\pi)\right| \leq \mathbb{E}\left[\left.\mathsf{Tr}(\left.\mathcal{T}_{\lambda}\left.\mathcal{T}_{\lambda}^{\star}
ight)^{l_{1}}\cdots\mathsf{Tr}\left(\left.\mathcal{T}_{\lambda}\left.\mathcal{T}_{\lambda}^{\star}
ight)^{l_{k}}
ight]
ight]$$

Moments of random matrices:

$$\mathbb{E}\big[\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{Tr}(T_{\lambda}T_{\lambda}^{\star})^{l_{k}}\big]=\sum_{\substack{\sigma_{1},\sigma_{2}\in S_{l},\\\sigma_{1}\sigma_{2}=\pi}}N^{\lambda}(\sigma_{1},\sigma_{2}).$$

Free cumulants Random matrices and characters Estimates for characters

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_l, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Corollary

$$\left|\Sigma^{\lambda}(\pi)
ight|\leq\mathbb{E}ig[\operatorname{\mathsf{Tr}}(\,T_{\lambda}\,T_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{\mathsf{Tr}}(\,T_{\lambda}\,T_{\lambda}^{\star})^{l_{k}}ig]$$

- 4 🗇 ▶

글 > - < 글 >

Free cumulants Random matrices and characters Estimates for characters

Random matrices and characters

Characters of symmetric groups:

$$\Sigma^{\lambda}(\pi) = \sum_{\substack{\sigma_1, \sigma_2 \in S_I, \\ \sigma_1 \sigma_2 = \pi}} (-1)^{|\sigma_1|} N^{\lambda}(\sigma_1, \sigma_2).$$

Corollary

$$\left|\Sigma^{\lambda}(\pi)
ight|\leq\mathbb{E}ig[\operatorname{\mathsf{Tr}}(\,\mathcal{T}_{\lambda}\,\mathcal{T}_{\lambda}^{\star})^{l_{1}}\cdots\operatorname{\mathsf{Tr}}(\,\mathcal{T}_{\lambda}\,\mathcal{T}_{\lambda}^{\star})^{l_{k}}ig]$$

Therefore the asymptotics of characters on long permutations $(l_1, l_2, \dots \to \infty)$ is related to asymptotics of the largest eigenvalues of $T_{\lambda}T_{\lambda}^{\star}$.

- 4 同 6 4 日 6 4 日 6

Introduction Free cumulants Stanley-Féray character formula Characters, free probability and random matrices Estimates for characters

Random matrices and circular operator

If λ is big then random matrix T_{λ} can be approximated by a circular operator T:

 $\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$

3 N

Introduction	Free cumulants
Stanley-Féray character formula	Random matrices and characters
Characters, free probability and random matrices	Estimates for characters

If λ is big then random matrix T_{λ} can be approximated by a circular operator T:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$

• noncommutative probability space $(\mathcal{A}, \mathbb{E} : \mathcal{A} \to \mathcal{D})$

Introduction	
Stanley-Féray character formula	Random matrices and characters
Characters, free probability and random matrices	

If λ is big then random matrix T_{λ} can be approximated by a circular operator T:

$$\mathbb{E}\operatorname{tr}\left[\left(T_{\lambda}T_{\lambda}^{\star}\right)^{n}\right]\approx\phi\left[\left(TT^{\star}\right)^{n}\right].$$

- noncommutative probability space ($\mathcal{A},\mathbb{E}:\mathcal{A}\rightarrow\mathcal{D})$
- $\mathcal{D}=\mathcal{L}^1(\mathbb{R}_+)$ corresponds to diagonal matrices

Introduction	Free cumulants
Stanley-Féray character formula	Random matrices and characters
Characters, free probability and random matrices	Estimates for characters

If λ is big then random matrix T_{λ} can be approximated by a circular operator T:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$

- noncommutative probability space $(\mathcal{A}, \mathbb{E} : \mathcal{A} \to \mathcal{D})$
- $\mathcal{D}=\mathcal{L}^1(\mathbb{R}_+)$ corresponds to diagonal matrices
- state $\phi:\mathcal{D}
 ightarrow\mathbb{C}$, $\phi(f)=\int_{0}^{\infty}f(t)dt$ corresponds to trace

Introduction	Free cumulants
Stanley-Féray character formula	Random matrices and characters
Characters, free probability and random matrices	Estimates for characters

If λ is big then random matrix T_{λ} can be approximated by a circular operator T:

$$\mathbb{E}\operatorname{tr}\left[(T_{\lambda}T_{\lambda}^{\star})^{n}\right]\approx\phi\left[(TT^{\star})^{n}\right].$$

- noncommutative probability space $(\mathcal{A},\mathbb{E}:\mathcal{A}\rightarrow\mathcal{D})$
- $\mathcal{D}=\mathcal{L}^1(\mathbb{R}_+)$ corresponds to diagonal matrices
- state $\phi : \mathcal{D} \to \mathbb{C}$, $\phi(f) = \int_0^\infty f(t) dt$ corresponds to trace covariance of T:

$$\begin{bmatrix} k(T, f \ T^*) \end{bmatrix} (s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T^*, f \ T) \end{bmatrix} (s) = \int_{(s,t)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T, f \ T) \end{bmatrix} (s) = 0,$$
$$\begin{bmatrix} k(T^*, f \ T^*) \end{bmatrix} (s) = 0.$$

Free cumulants Random matrices and characters Estimates for characters

Character and circular operator

covariance of T:

$$\begin{bmatrix} k(T, f \ T^*) \end{bmatrix} (s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T^*, f \ T) \end{bmatrix} (s) = \int_{(s,t)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T, f \ T) \end{bmatrix} (s) = 0,$$
$$\begin{bmatrix} k(T^*, f \ T^*) \end{bmatrix} (s) = 0.$$

Free cumulants Random matrices and characters Estimates for characters

Character and circular operator

covariance of T:

$$\begin{bmatrix} k(T, f \ T^*) \end{bmatrix} (s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T^*, f \ T) \end{bmatrix} (s) = (-1) \int_{(s,t)\in\lambda} f(t) \ dt,$$
$$\begin{bmatrix} k(T, f \ T) \end{bmatrix} (s) = 0,$$
$$\begin{bmatrix} k(T^*, f \ T^*) \end{bmatrix} (s) = 0.$$

Free cumulants Random matrices and characters Estimates for characters

Character and circular operator

Theorem

$$R_{k+1}^{\lambda} = \phi\big[(TT^{\star})^k\big]$$

covariance of T:

$$[k(T, f \ T^*)](s) = \int_{(t,s)\in\lambda} f(t) \ dt,$$

$$[k(T^*, f \ T)](s) = (-1) \int_{(s,t)\in\lambda} f(t) \ dt,$$

$$[k(T, f \ T)](s) = 0,$$

$$[k(T^*, f \ T^*)](s) = 0.$$

Introduction	Free cumulants
Stanley-Féray character formula	Random matrices and characters
Characters, free probability and random matrices	Estimates for characters

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics of characters.

Introduction	
Stanley-Féray character formula	
Characters, free probability and random matrices	Estimates for characters

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics of characters.

Theorem (Vershik-Kerov 1985)

For a Young diagram λ with n boxes

$$\chi^{\lambda}(1,2,\ldots,k) \approx \sum_{j} \left(\frac{\lambda_{j}}{n}\right)^{k} - \sum_{j} \left(-\frac{\lambda_{j}'}{n}\right)^{k}$$

holds asymptotically, for $n \to \infty$.

Introduction	Free cumulants
Stanley-Féray character formula	Random matrices and characters
Characters, free probability and random matrices	Estimates for characters

Estimates for characters

Stanley-Féray character formula is perfect for studying asymptotics of characters.

Theorem (Vershik-Kerov 1985)

For a Young diagram λ with n boxes

$$\chi^{\lambda}(1,2,\ldots,k) \approx \sum_{j} \left(\frac{\lambda_{j}}{n}\right)^{k} - \sum_{j} \left(-\frac{\lambda_{j}'}{n}\right)^{k}$$

holds asymptotically, for $n \to \infty$.

Stanley-Féray formula: new one-line proof and estimate for error term

Introduction Stanley-Féray character formula Characters, free probability and random matrices Estimates for characters

New bounds for characters

Theorem (Roichman 1996)

There exist constants 0 < q < 1 and b > 0 such that for any Young diagram λ with n boxes

$$|\chi^{\lambda}(\pi)| \leq \left[\max\left(rac{r(\lambda)}{n},rac{c(\lambda)}{n},q
ight)
ight]^{b \;|\pi|}$$

Theorem (Féray–Śniady 2007)

There exists a constant C such that for any Young diagram λ with n boxes

$$|\chi^{\lambda}(\pi)| \leq \left[C \max\left(rac{r(\lambda)}{n}, rac{c(\lambda)}{n}, rac{|\pi|}{n}
ight)
ight]^{|\pi|}$$

Introduction Free cumulants Stanley-Féray character formula Random matrices and characters Characters, free probability and random matrices Estimates for characters

Bibliography

Valentin Féray, Piotr Śniady.

Asymptotics of characters of symmetric groups related to Stanley-Féray character formula arXiv:math.RT/0701051

Cristopher Moore, Alexander Russell, Piotr Śniady. On the impossibility of a quantum sieve algorithm for graph isomorphism: unconditional results. arXiv:quant-ph/0612089