Asymptotics of symmetric groups representations

Piotr Śniady

University of Wrocław

Outline

- Representations of symmetric groups and Young diagrams
- Asymptotic representation theory: Example of a problem
- 3 Main result: Gaussian fluctuations of Young diagrams

A (1) > A (2) > A

Outline

Asymptotic representation theory The main problem: decomposition of reducible representations

Representations of symmetric groups and Young diagrams

- 2 Asymptotic representation theory: Example of a problem
- 3 Main result: Gaussian fluctuations of Young diagrams

イロト イポト イラト イラ

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Representations

Asymptotic representation theory The main problem: decomposition of reducible representations

representation of a group G

(日) (同) (三) (三)

Representations

Asymptotic representation theory The main problem: decomposition of reducible representations

representation of a group G is a homomorphism from G to invertible $n \times n$ matrices

$$\rho: G \to M_{n \times n}(\mathbb{C}),$$

(日) (同) (三) (三)

Representations

Asymptotic representation theory The main problem: decomposition of reducible representations

representation of a group G is a homomorphism from G to invertible $n \times n$ matrices

$$\rho: G \to M_{n \times n}(\mathbb{C}),$$

in other words,

$$\rho(g_1g_2)=\rho(g_1)\rho(g_2) \qquad \text{for any } g_1,g_2\in {\cal G}.$$

(日) (同) (三) (三)

Representations

Asymptotic representation theory The main problem: decomposition of reducible representations

representation of a group G is a homomorphism from G to invertible $n \times n$ matrices

$$\rho: G \to M_{n \times n}(\mathbb{C}),$$

in other words,

$$\rho(g_1g_2)=\rho(g_1)\rho(g_2)\qquad\text{for any }g_1,g_2\in G.$$

Example

Representation of S_3 as symmetries of a triangle on a plane.

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can

inscribe a cube

- < 同 > < 三 > < 三 >

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube

- < 同 > < 三 > < 三 >

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

∃ → < ∃</p>

A >

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

∃ → < ∃</p>

A >

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

3

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

3

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

Asymptotic representation theory: Example of a problem Main result: Gaussian fluctuations of Young diagrams

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

< 6 >

∃ ► < ∃ ►</p>

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

Every rotation of the dodecahedron defines a permutation of the five cubes.

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

Every rotation of the dodecahedron defines an even permutation of the five cubes.

・ 同 ト ・ ヨ ト ・ ヨ

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

Every rotation of the dodecahedron defines an even permutation of the five cubes.

In fact, there is an isomorphism between the group of rotations of the dodecahedron and the group A_5 of even permutations.

Example

Asymptotic representation theory The main problem: decomposition of reducible representations

Into a dodecahedron we can inscribe a cube in five ways.

Every rotation of the dodecahedron defines an even permutation of the five cubes.

In fact, there is an isomorphism between the group of rotations of the dodecahedron and the group A_5 of even permutations.

This gives a representation of A_5 as rotations of the dodecahedron.

< ロ > < 同 > < 三 > < 三 >

Asymptotic representation theory The main problem: decomposition of reducible representations

Asymptotic representation theory

Let G_1, G_2, \ldots be a fixed sequence of groups, and ρ_1, ρ_2, \ldots be a sequence of representations, where ρ_i is a representation of G_i .

- 4 同 2 4 日 2 4 日 2

Asymptotic representation theory The main problem: decomposition of reducible representations

Asymptotic representation theory

Let G_1, G_2, \ldots be a fixed sequence of groups, and ρ_1, ρ_2, \ldots be a sequence of representations, where ρ_i is a representation of G_i .

The main problem

What can we say about asymptotic properties of ρ_n in the limit $n \to \infty$?

Asymptotic representation theory The main problem: decomposition of reducible representations

Asymptotic representation theory

Let G_1, G_2, \ldots be a fixed sequence of groups, and ρ_1, ρ_2, \ldots be a sequence of representations, where ρ_i is a representation of G_i .

The main problem

What can we say about asymptotic properties of ρ_n in the limit $n \to \infty$?

Today: $G_n = S_n$ are the symmetric groups.

Asymptotic representation theory The main problem: decomposition of reducible representations

Asymptotic representation theory

Let G_1, G_2, \ldots be a fixed sequence of groups, and ρ_1, ρ_2, \ldots be a sequence of representations, where ρ_i is a representation of G_i .

The main problem

What can we say about asymptotic properties of ρ_n in the limit $n \to \infty$?

Today: $G_n = S_n$ are the symmetric groups.

Motivations:

harmonic analysis on groups,

Asymptotic representation theory The main problem: decomposition of reducible representations

Asymptotic representation theory

Let G_1, G_2, \ldots be a fixed sequence of groups, and ρ_1, ρ_2, \ldots be a sequence of representations, where ρ_i is a representation of G_i .

The main problem

What can we say about asymptotic properties of ρ_n in the limit $n \rightarrow \infty$?

Today: $G_n = S_n$ are the symmetric groups.

Motivations:

- harmonic analysis on groups,
- random walks on groups,

Asymptotic representation theory The main problem: decomposition of reducible representations

Asymptotic representation theory

Let G_1, G_2, \ldots be a fixed sequence of groups, and ρ_1, ρ_2, \ldots be a sequence of representations, where ρ_i is a representation of G_i .

The main problem

What can we say about asymptotic properties of ρ_n in the limit $n \rightarrow \infty$?

Today: $G_n = S_n$ are the symmetric groups.

Motivations:

- harmonic analysis on groups,
- random walks on groups,
- computational complexity of quantum computers.

Asymptotic representation theory The main problem: decomposition of reducible representations

Irreducible representations

A representation $\rho : G \to \text{End}(V)$ on a vector space V is reducible if there exists a nontrivial decomposition into subrepresentations: $V = V_1 \oplus V_2$ and $\rho = \rho_1 \oplus \rho_2$.

< 同 > < 三 > < 三 >

Irreducible representations

A representation $\rho : G \to \text{End}(V)$ on a vector space V is reducible if there exists a nontrivial decomposition into subrepresentations: $V = V_1 \oplus V_2$ and $\rho = \rho_1 \oplus \rho_2$.

Otherwise, a representation is called irreducible.

・ 回 トーイ ヨート・イ ヨート

Irreducible representations

A representation $\rho : G \to \text{End}(V)$ on a vector space V is reducible if there exists a nontrivial decomposition into subrepresentations: $V = V_1 \oplus V_2$ and $\rho = \rho_1 \oplus \rho_2$.

Otherwise, a representation is called irreducible.

Irreducible representations ρ^{λ} of symmetric group S_n are in a one-to-one correspondence with Young diagrams λ having *n* boxes.

Asymptotic representation theory The main problem: decomposition of reducible representations

The main problem: decomposition of reducible representations

Every reducible representation ρ_n of S_n defines the canonical probability measure on Young diagrams with *n* boxes, given as follows.

Asymptotic representation theory The main problem: decomposition of reducible representations

The main problem: decomposition of reducible representations

Every reducible representation ρ_n of S_n defines the canonical probability measure on Young diagrams with *n* boxes, given as follows.

We decompose ρ_n as a direct sum of irreducible representations and the probability of a Young diagram λ_n should be proportional to the total dimension of irreducible components of ρ_n of type $[\lambda_n]$.

Asymptotic representation theory The main problem: decomposition of reducible representations

The main problem: decomposition of reducible representations

Every reducible representation ρ_n of S_n defines the canonical probability measure on Young diagrams with *n* boxes, given as follows.

We decompose ρ_n as a direct sum of irreducible representations and the probability of a Young diagram λ_n should be proportional to the total dimension of irreducible components of ρ_n of type $[\lambda_n]$.

The main problem, concrete version

Suppose that some sequence of reducible representations ρ_n is given. What are the statistical properties of a randomly chosen Young diagram λ_n in the limit $n \to \infty$?

Outline

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

- Representations of symmetric groups and Young diagrams
- Asymptotic representation theory: Example of a problem
- 3 Main result: Gaussian fluctuations of Young diagrams

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Example of a concrete problem: Restriction of irreducible representations

We consider a Young diagram ν with a shape of a $n \times n$ square and the corresponding irreducible representation ρ^{ν} of S_{n^2} .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Example of a concrete problem: Restriction of irreducible representations

We consider a Young diagram ν with a shape of a $n \times n$ square and the corresponding irreducible representation ρ^{ν} of S_{n^2} .

Problem

Let $0 < \alpha < 1$. What can we say about the restriction of the representation ρ^{ν} to a subgroup $S_{\alpha n^2}$?

A (1) > (1) > (1)
Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \searrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \nwarrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Young tableaux

A Young tableau is a filling of this Young diagram with numbers $1, \ldots, n^2$ such that the numbers increase along the diagonals \nearrow , \searrow .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Removal of boxes

Theorem

The following random Young diagrams have the same distribution:

A⊒ ▶ ∢ ∃

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Removal of boxes

Theorem

The following random Young diagrams have the same distribution:

• the random Young diagram associated to the restriction of the irreducible representation ρ^{ν} to a subgroup $S_{\alpha n^2}$;

Image: A (1) → A (

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Removal of boxes

Theorem

The following random Young diagrams have the same distribution:

- the random Young diagram associated to the restriction of the irreducible representation ρ^{ν} to a subgroup $S_{\alpha n^2}$;
- from a randomly chosen Young tableau

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Removal of boxes

Theorem

The following random Young diagrams have the same distribution:

- the random Young diagram associated to the restriction of the irreducible representation ρ^{ν} to a subgroup $S_{\alpha n^2}$;
- from a randomly chosen Young tableau we remove all boxes with numbers bigger than αn^2 .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Removal of boxes

Theorem

The following random Young diagrams have the same distribution:

- the random Young diagram associated to the restriction of the irreducible representation ρ^{ν} to a subgroup $S_{\alpha n^2}$;
- from a randomly chosen Young tableau we remove all boxes with numbers bigger than αn^2 .

< ロ > < 同 > < 三 > < 三

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

Alternative description of the problem: Removal of boxes

Theorem

The following random Young diagrams have the same distribution:

- the random Young diagram associated to the restriction of the irreducible representation ρ^{ν} to a subgroup $S_{\alpha n^2}$;
- from a randomly chosen Young tableau we remove all boxes with numbers bigger than αn^2 .

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

What can we learn from this example?

• For any question concerning representations of S_n there is a well-known answer given by some *combinatorial* algorithm.

4 3 1 1 4

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

What can we learn from this example?

 For any question concerning representations of S_n there is a well-known answer given by some *combinatorial* algorithm. However, when n → ∞, such combinatorial answers are useless.

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

What can we learn from this example?

- For any question concerning representations of S_n there is a well-known answer given by some *combinatorial* algorithm. However, when n → ∞, such combinatorial answers are useless.
- We need more analytic methods.

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

What can we learn from this example?

- For any question concerning representations of S_n there is a well-known answer given by some *combinatorial* algorithm. However, when n → ∞, such combinatorial answers are useless.
- We need more analytic methods.
 Sergey Kerov: associate to a Young diagram λ its transition measure μ_λ which is a certain probability measure on ℝ.
 When λ is random, μ_λ is a random probability measure on ℝ.

A (1) > A (2) > A

Problem: Restriction of representations Alternative description of the problem What can we learn from this example?

What can we learn from this example?

- For any question concerning representations of S_n there is a well-known answer given by some *combinatorial* algorithm. However, when n → ∞, such combinatorial answers are useless.
- We need more analytic methods.
 Sergey Kerov: associate to a Young diagram λ its transition measure μ_λ which is a certain probability measure on ℝ.
 When λ is random, μ_λ is a random probability measure on ℝ.

Analogy to random matrices: if M is a hermitian matrix, we can encode its eigenvalues in its spectral measure μ_M which is a probability measure on \mathbb{R} . When M is a random matrix, μ_M is a random probability measure on \mathbb{R} .

・ロト ・同ト ・ヨト ・ヨト

Outline

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

- Representations of symmetric groups and Young diagrams
- 2 Asymptotic representation theory: Example of a problem
- 3 Main result: Gaussian fluctuations of Young diagrams

< ロ > < 同 > < 三 > < 三

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Main theorem: law of large numbers

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters

< 同 > < 三 > < 三 >

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Main theorem: law of large numbers

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

< 同 > < 三 > < 三 >

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Main theorem: law of large numbers

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Theorem (law of large numbers, Philippe Biane 1998)

The sequence of rescaled random Young diagrams $(\frac{1}{\sqrt{n}}\lambda_n)$ converges in probability to some (generalized) Young diagram λ . The shape of this limit can be described by the free probability theory.

・ロト ・同ト ・ヨト ・ヨト

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Main theorem: central limit theorem

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

< 同 > < 三 > < 三 >
Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Main theorem: central limit theorem

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Theorem (central limit theorem, Piotr Śniady 2005)

The sequence of the fluctuations $(\frac{1}{\sqrt{n}}\lambda_n - \lambda)$, after some additional rescaling, converges in distribution to a Gaussian process. The covariance of this process can be described by second-order free probability theory.

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Main theorem: central limit theorem

Suppose that (ρ_n) is a sequence of representations with approximate factorization of characters and let (λ_n) be the corresponding sequence of random Young diagrams.

Theorem (central limit theorem, Piotr Śniady 2005)

The sequence of the fluctuations $(\frac{1}{\sqrt{n}}\lambda_n - \lambda)$, after some additional rescaling, converges in distribution to a Gaussian process. The covariance of this process can be described by second-order free probability theory.

Generalization of Kerov's central limit theorem.

- < 同 > < 三 > < 三 >

Notations

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

If ρ is a representation of the symmetric group, its normalized character χ_ρ is defined by

$$\chi_{
ho}(\pi) = \operatorname{tr}
ho(\pi) = rac{\operatorname{Tr}
ho(\pi)}{\operatorname{Tr}
ho(e)}.$$

(日) (同) (三) (三)

Notations

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

If ρ is a representation of the symmetric group, its normalized character χ_ρ is defined by

$$\chi_{
ho}(\pi) = \operatorname{tr}
ho(\pi) = rac{\operatorname{Tr}
ho(\pi)}{\operatorname{Tr}
ho(e)}.$$

Support of a permutation is the set of non-fixed points.

(日) (同) (日) (日)

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Approximate factorization of characters

We say that a sequence of representations (ρ_n) has the property of approximate factorization of characters if for any permutations π_1, \ldots, π_I with disjoint supports

$$\chi_{\rho_n}(\pi_1\ldots\pi_l)\approx\chi_{\rho_n}(\pi_1)\cdots\chi_{\rho_n}(\pi_l),$$

where the approximate equality should hold for $n \to \infty$.

- 4 同 2 4 日 2 4 日 2

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Approximate factorization of characters

We say that a sequence of representations (ρ_n) has the property of approximate factorization of characters if for any permutations π_1, \ldots, π_I with disjoint supports

$$\chi_{\rho_n}(\pi_1\ldots\pi_l)\approx\chi_{\rho_n}(\pi_1)\cdots\chi_{\rho_n}(\pi_l),$$

where the approximate equality should hold for $n \to \infty$.

Permutations π_1, \ldots, π_l commute hence we can treat them as classical random variables and as the expected value we take the normalized character χ_{ρ_n} .

・ロト ・同ト ・ヨト ・ヨト

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Approximate factorization of characters

We say that a sequence of representations (ρ_n) has the property of approximate factorization of characters if for any permutations π_1, \ldots, π_I with disjoint supports

$$\chi_{\rho_n}(\pi_1\ldots\pi_l)\approx\chi_{\rho_n}(\pi_1)\cdots\chi_{\rho_n}(\pi_l),$$

where the approximate equality should hold for $n \to \infty$.

Permutations π_1, \ldots, π_l commute hence we can treat them as classical random variables and as the expected value we take the normalized character χ_{ρ_n} .

We require that the classical cumulant $k(\pi_1, \ldots, \pi_l)$ converges quickly enough to zero.

$$k(\pi_1,\ldots,\pi_l)=O\left(n^{-\frac{|\pi_1|+\cdots+|\pi_l|+2(l-1)}{2}}\right).$$

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

- 4 同 2 4 日 2 4 日 2

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

• if ρ_n is the *left regular representation*;

A (1) > A (2) > A

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

- if ρ_n is the left regular representation;
- if ρ_n is the representation such that S_n is acting on (ℂ^{d_n})^{⊗n} by permuting the factors;

- < 同 > < 三 > < 三 >

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

- if ρ_n is the left regular representation;
- if ρ_n is the representation such that S_n is acting on (ℂ^{d_n})^{⊗n} by permuting the factors;
- if ρ_n is an irreducible representation;

- < 同 > < 三 > < 三 >

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

- if ρ_n is the left regular representation;
- if ρ_n is the representation such that S_n is acting on (ℂ^{d_n})^{⊗n} by permuting the factors;
- if ρ_n is an irreducible representation;
- many natural operations on representations preserve the characters factorization property: tensor product, outer product, induction and restriction,...

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

- if ρ_n is the left regular representation;
- if ρ_n is the representation such that S_n is acting on (ℂ^{d_n})^{⊗n} by permuting the factors;
- if ρ_n is an irreducible representation;
- many natural operations on representations preserve the characters factorization property: tensor product, outer product, induction and restriction,...

Corollary

What was the shape of the pile of stones?

< 口 > < 同 > < 三 > < 三

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Examples of sequences of representations with characters factorization property

- if ρ_n is the left regular representation;
- if ρ_n is the representation such that S_n is acting on (ℂ^{d_n})^{⊗n} by permuting the factors;
- if ρ_n is an irreducible representation;
- many natural operations on representations preserve the characters factorization property: tensor product, outer product, induction and restriction,...

Corollary

What was the shape of the pile of stones? The answer for this problem is given by a certain Gaussian process.

(日) (同) (日) (日)

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Experimental verification

(日) (同) (日) (日)

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Experimental verification

Law of large numbers and central limit theorem Approximate factorization of characters **Proof of the main result**

Characters factorization implies Gaussian fluctuations: How to prove the main result?

For random matrices we can express the moments of a random matrix in terms of the cumulants of the entries which involves summation over certain partitions and permutations.

Law of large numbers and central limit theorem Approximate factorization of characters **Proof of the main result**

Characters factorization implies Gaussian fluctuations: How to prove the main result?

For random matrices we can express the moments of a random matrix in terms of the cumulants of the entries which involves summation over certain partitions and permutations.

To each such summand we associate a two-dimensional surface. The asymptotic behavior of a summand depends only on its topology. This technique is called genus expansion.

Law of large numbers and central limit theorem Approximate factorization of characters **Proof of the main result**

Characters factorization implies Gaussian fluctuations: How to prove the main result?

For random matrices we can express the moments of a random matrix in terms of the cumulants of the entries which involves summation over certain partitions and permutations.

To each such summand we associate a two-dimensional surface. The asymptotic behavior of a summand depends only on its topology. This technique is called genus expansion.

We prove that the genus expansion can be applied for representations of S_n as well.

A (1) > A (2) > A

Law of large numbers and central limit theorem Approximate factorization of characters **Proof of the main result**

Characters factorization implies Gaussian fluctuations: How to prove the main result?

For random matrices we can express the moments of a random matrix in terms of the cumulants of the entries which involves summation over certain partitions and permutations.

To each such summand we associate a two-dimensional surface. The asymptotic behavior of a summand depends only on its topology. This technique is called genus expansion.

We prove that the genus expansion can be applied for representations of S_n as well. In this way the proofs of the results for random matrices can be directly translated to symmetric groups.

イロト イポト イラト イラト

Bibliography

Law of large numbers and central limit theorem Approximate factorization of characters Proof of the main result

Piotr Śniady.

Gaussian fluctuations of characters of symmetric groups and of Young diagrams.

Probab. Theory Related Fields 136 (2006), no. 2, 263-297

Piotr Śniady.

Asymptotics of characters of symmetric groups, genus expansion and free probability.

Discrete Math. 306 (2006), no. 7, 624-665

Piotr Śniady.

Gaussian fluctuations of representations of wreath products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006), no. 4, 529–546

・ロト ・同ト ・ヨト ・ヨト