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Representations

representation of a group G is a homomorphism from G to
invertible n x n matrices

P G— Mnxn((c)’
in other words,

p(girg2) = p(g1)p(g2)  forany g1,82 € G.

Example

Representation of S(3) as l 1

symmetries of a triangle on a /\
plane.
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Representations
0e0000

Example

Into a dodecahedron we can
inscribe a cube in five ways.



Representations
0e0000

Example

Into a dodecahedron we can
inscribe a cube in five ways.

B
ﬁl

N



Representations
0e0000

Example

Into a dodecahedron we can
inscribe a cube in five ways.



Representations Free cumulants Questions

O®@0000

Application

Example

Into a dodecahedron we can
inscribe a cube in five ways.




Representations
0e0000

Example

Into a dodecahedron we can
inscribe a cube in five ways.



OOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Into a dodecahedron we can
inscribe a cube in five ways.




Representations Free cumulants Kerov polynomials Questions Proof Application
0e0000 000 0000000 000 0000000 000

Example

Into a dodecahedron we can
inscribe a cube in five ways.

Every rotation of the
dodecahedron defines a
permutation of the five cubes.
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Example

Into a dodecahedron we can
inscribe a cube in five ways.

Every rotation of the
dodecahedron defines an even
permutation of the five cubes.
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Example

Into a dodecahedron we can
inscribe a cube in five ways.

Every rotation of the
dodecahedron defines an even
permutation of the five cubes.

In fact, there is an isomorphism
between the group of rotations of
the dodecahedron and the group
A(5) of even permutations.
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Example

Into a dodecahedron we can
inscribe a cube in five ways.

Every rotation of the
dodecahedron defines an even
permutation of the five cubes.

In fact, there is an isomorphism
between the group of rotations of
the dodecahedron and the group
A(5) of even permutations.

This gives a representation of
A(5) as rotations of the
dodecahedron.
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Irreducible representations and characters

A representation p : G — End(V/) on a vector space V is called
reducible if there exists a nontrivial decomposition into
subrepresentations: V = Vi @ V; and p = p1 @ p2.

Otherwise, a representation is called irreducible.

If p is an irreducible representation, we define its character
x” : G — C given by

Trp(g)
Pg) =
X’(g) dimension of p°
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Irreducible representations of symmetric groups

Irreducible representations p* of
symmetric group S(n) are indexed by
Young diagrams A having n boxes.

Problem

What is the relation between the shape of a Young diagram
and the corresponding irreducible character?
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Dilations of Young diagrams

diagram \ dilated diagram s\ for s = 3

Problem

What happens to irreducible characters of symmetric groups
corresponding to sA fors — oo?
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Normalized characters

For 7 € S(k) and irreducible representation p* of S(n)
(assume k < n) we define the normalized character

Tr p*(m)

A -1 (n—k+1) ——M——.
n(n—1)---(n + )dimension of p

T =

k factors

Most interesting case: characters on cycles

P
Yi =200 k)

The same problem, concretely:

For fixed k > 1 what can we say about fo‘ for s — o0?
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Free cumulants

The map s — Zi)l1 is a polynomial of degree k.
We define free cumulants R\, R3, ... of diagram \ to be
asymptotically the dominant terms of the character on cycles:

Ry = ||m zk L= [sME

Advertisement

Free cumulants are very nice quantities describing a Young diagram.

Z;(\_l ~ R,i‘ has a lot of implications in the representation theory

Free cumulants are homogeneous with respect to dilations:
SA _ ckpA
R =s"Rp.

There are relatively simple explicit formulas for free cumulants of
Young diagrams.
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Free cumulants for free probability people 1

Denote x = n+ 1. Jucys-Murphy element is defined by
J=(1%) + -+ (nx) € C(S(n+1)).

Let p* be an irreducible representation of S(n).
We equip (C(S(n + 1)) with an expected value:

EX = (x| ™).

Free cumulants of Young diagram A are just free cumulants of
Jucys-Murphy element with respect to this expected value:

Ry = Ri(J).
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Free cumulants for free probability people 2

\: N :/
CO

; : ; 7 ; ; ;

i i i i i i i

X1 Y1 Xo Y2 X3 Y3 Xa

Cauchy transform of a Young diagram:

A _(Z_YI)"'(Z_}’sfl)
67(2) = (z=—x1) - (z—xs5)

Free cumulants of ) are the free cumulants related to G*.
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Kerov polynomials

Free cumulants give approximations of characters:
Yk ~ Riqa,

but they can also give exact values of characters thanks to
Kerov character polynomials:

Y =hRy,

Y, =hs,

Y3 =Ry + Ry,
>4 = Rs +5Rs,

Y5 = Re + 15Ry + 5R2 + 8R;,
Y6 = R; 4+ 35R5 + 35R3R> + 84Rs.

Studied by: S. Kerov, Ph. Biane, R. Stanley, I. Goulden, A. Rattan,
M. Lassalle,. ..
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The main result:
combinatorial interpretation of Kerov polynomials

For a permutation 7 we denote by C() the set of cycles of 7.

Theorem (Dotega, Féray, Sniady)

The coefficient [R32R5* - - - 1% is equal to the number of triples
(01,02, q) such that
@ 01,02 € S(k) are such that o1 00y = (1,2,...,k),
@ q: C(02) —{2,3,...} is a labeling such that each label
i€{2,3,...} is used s; times,
@ consider a bipartite graph C(o1) U C(02), where ¢; € C(o1) is
connected by an edge with c; € C(03) iff they are not disjoint;
we require that it is a g-admissible graph.
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Admissible bipartite graphs 1
Let Vi and V5 be the vertices of a bipartite connected graph and

let g: Vo — {2,3,...} be a labelling of the red vertices.
We say that this graph is g-admissible if. ..

it is possible to choose orientations on the edges in such a way that:
@ each blue vertex has exactly one outgoing edge,
@ each red vertex v has exactly g(v) — 1 incoming edges,
@ for any red vertices v, v it is possible to find a path from vy

to wo.
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Let Vi and V5 be the vertices of a bipartite connected graph and
let g: Vo — {2,3,...} be a labelling of the red vertices.
We say that this graph is g-admissible if. ..
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Admissible bipartite graphs 2

Let Vi and V5 be the vertices of a bipartite connected graph and
let g: Vo — {2,3,...} be a labelling of the red vertices.
We say that this graph is g-admissible if. ..

for every nontrivial set ) & A C V5 of red vertices there are more
than " ., (g(c) — 1) blue vertices are connected with at least one
vertex in A.

[

e 3
[ ]

o 2
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Admissible bipartite graphs 3

1 @
1
1 ® 3-1=2
2
1 @ L
21 ® 2-1=1
1 @ Y
1 ® 2-1=1
2
1 @

Each blue factory produces 1 unit.

Each red consumer g uses g(g) — 1 units.

We require that there is a way to arrange transportation so that
every edge of the graph has a positive number.
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Restriction on graphs

If there exists an disconnecting edge with at least one red vertex in
each of the components then the graph cannot be admissible (no
matter which labeling we choose).

“No part of the graph can look like a tree.”
Application: coefficients of Kerov polynomials are small.
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The main result:
combinatorial interpretation of Kerov polynomials

For a permutation 7 we denote by C() the set of cycles of 7.

Theorem (Dotega, Féray, Sniady)

The coefficient [R32R5* - - - 1% is equal to the number of triples
(01,02, q) such that
@ 01,02 € S(k) are such that o1 00y = (1,2,...,k),
@ q: C(02) —{2,3,...} is a labeling such that each label
i€{2,3,...} is used s; times,
@ consider a bipartite graph C(o1) U C(02), where ¢; € C(o1) is
connected by an edge with c, € C(0,) iff they are not disjoint;
we require that it is a g-admissible graph.
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@ positivity: Kerov polynomials give characters as simple sums
without too many cancellations,

@ optimal estimates for characters,

@ more information on the structure of Kerov polynomials
(solution to Lassalle’s conjectures)

Questions Proof Application



Questions
oeo

~~~~~~

What is behind positivity?

Maybe coefficients of Kerov polynomials

@ are equal to dimensions of some intersection (co)homologies of
something?

@ are equal to something related to moduli space of analytic
maps on Riemann surfaces? or ramified coverings of a sphere?

@ are algebraic solutions to some integrable hierarchy (Toda?)
and their coefficients are related to the tau function of the
hierarchy?

Current definition of Kerov polynomials is rather implicit. Can we
find an explicit definition of the coefficients of Kerov polynomials
(using some exotic interpretation)?
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Application

Open problems

@ strange: Kerov polynomials also show up in the random matrix
theory for some bizzare random matrices (ask about it after
the talk!);

@ free cumulants originally come from Voiculescu's free
probability theory / random matrix theory. ..
is there some analogue of Kerov character polynomials in the
random matrix theory / respresentation theory of the unitary
groups U(d)?

@ is it possible to study Kerov polynomials in such a scaling that
phenomena of universality of random matrices occur?

@ the structure of Kerov polynomials is still not clear:
Goulden—Rattan conjecture (ask me after the talk!), Lassalle’s
conjectures
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Character formula

For any Young diagram X\ with n boxes and a permutation ™ € Sy

Do Y (U W),

01,02€5,
0102=T"
where N is the number of colorings (next slides).
(01,02)

Up to the =+ sign, the same formula gives moments of some bizzare
random matrix.
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Colorings

Assume 7 = 0107. Coloring (f1, ) of the cycles of (01, 07)
@ f; : C(01) — N maps the cycles of o1 to columns of A;
o f: C(02) — N maps the cycles of o, to rows of A;
o if ¢ is a cycle of 01, ¢ is a cycle of 0y and ¢; N ¢ # ) then
(ﬂ(Cl), fz(Cz)) € A
We denote the number of colorings of (o1, 02) by N*(o1,02).

Factorization (1,2) = (1)(2) - (1,2).
—— =~

o1 02

P M ()@, (1.2) = SR

__-—//——-// =>d|l==

where ) is the number of boxes
in j-th row.

| |
1 1
| |
T 1
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Number of colorings is homogeneous

diagram A dilated diagram s for s =3

NS/\(JLQ) — S\C(01)|+\C(az)\N/\(01’02)
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Number of colorings is homogeneous

diagram A dilated diagrlam s for s =3

NSA(JI’ 0‘2) = S‘C(UI)H"C(UZ)‘ NA(O'l, 0-2)
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Character formula

For any Young diagram A with n boxes and a permutation m € Sj

= ) () Moy, 00).

01,02€ Sk,
O102=T

It is nice because:
@ small number of summands if 7 is fixed;
@ each summand is directly related to the shape of A;

@ shows that s — ¥5* is a polynomial function.

m=(1,2) = (1)(2)- (1,2) = (1,2) - (1)(2), so

A _ A A _ 2 12
T2 = M@, ~ Mame = DA = 2N
1 1
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Toy example: linear terms of Kerov polynomials 1

)

» C C

g yPX9 — Z (_1)\01\ q| (01)] p‘ (o2)]
—

o 01,02€ Sk, pXq

t 0102=T (01,02)

«— q boxes —>

Corollary

o [¢'p|XB*9 is equal (up to the sign) to the number of
factorizations w = o105 such that o1 has i cycles and o, has
only one cycle.

1 ifi=k,

0 otherwise

[qip]R,f:f = [q'p](degree k + 1 part of ;) = {

4
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Toy example: linear terms of Kerov polynomials 2

R,’(’:f —g¥p + (terms containing higher powers of p),

Y =X Rki1 + (other monomials in free cumulants)

YPXa =X q“p+ (other monomials in p, q)

X = [Ris1]XZx =[q*p|ZP*7

= + (the number of factorizations ™ = 010, such

that oy has k cycles and oy has only one cycle)
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Kerov polynomials, general case

je— g3 ——

l< P3 >

g2

j<— P2 —

A
qt A
Q
A\

To get information about general coefficients of Kerov polynomials,
one has to consider more complex shapes.
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Application: random Young diagrams

Let p be, for example,
| left-regular representation of

— S(n).

We decompose it into irreducible
components and we randomly
select an irrecible component p*.

What can we say about \?

| | | What can we say about %)\?
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Let p be, for example,
left-regular representation of

S(n).

We decompose it into irreducible
components and we randomly
select an irrecible component p*.

What can we say about \?

What can we say about %)\?
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left-regular representation of
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What can we say about \?
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Application: random Young diagrams

Let p be, for example,
left-regular representation of

S(n).

We decompose it into irreducible
components and we randomly
select an irrecible component p*.

What can we say about \?

What can we say about %)\?

n = 1600
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Application: random Young diagrams

Let p be, for example,
left-regular representation of

S(n).

We decompose it into irreducible
components and we randomly
select an irrecible component p*.

What can we say about \?
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Application: random Young diagrams

Let p be, for example,
left-regular representation of

S(n).

We decompose it into irreducible
components and we randomly
select an irrecible component p*.

What can we say about \?

What can we say about %)\?

n = 25600
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Free cumulants: shape of rescaled diagram vs characters

Shape of %)\ is determined by free cumulants:

1 k—2
' N k=2 oy
Ri = —=Yy_1~nz X(1,....k—1)

Vnk

k /_nk

In the case of random Young diagrams we know the typical value of
characters:
A
Exz = X7

General phenomenon: random Young diagrams behave like
eigenvalues of random matrices.
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