Kerov character polynomials:
recent progress in asymptotic representation theory
of symmetric groups
(joint work with Maciej Dołęga and Valentin Féray)

Piotr Śniady

University of Wroclaw

Outlook

- What can we say about the asymptotics of characters of symmetric groups S(n) in the limit $n \to \infty$?
- Exact values of characters can be calculated from free cumulants thanks to Kerov polynomials.
- The main result: explicit combinatorial interpretation of the coefficients of Kerov polynomials.
- Open problems: relations to Schubert calculus, Toda hierarchy,
 ...

Plan

- Representations of symmetric groups
 - Representations
 - Young diagrams and normalized characters
 - Free cumulants
- Merov character polynomials
- Open problems
- Proof of Kerov conjecture

Representations

representation of a group G is a homomorphism from G to invertible $n \times n$ matrices

$$\rho: G \to M_{n \times n}(\mathbb{C}).$$

Example

Representation of S(3) as symmetries of a triangle on a plane.

Irreducible representations

A representation $\rho: G \to \operatorname{End}(V)$ on a vector space V is reducible if there exists a nontrivial decomposition into subrepresentations.

Otherwise, a representation is called irreducible.

Irreducible representations

A representation $\rho: G \to \operatorname{End}(V)$ on a vector space V is reducible if there exists a nontrivial decomposition into subrepresentations.

Otherwise, a representation is called irreducible.

Motivations:

- ullet irreducible representations \longleftrightarrow Fourier transform,
- harmonic analysis on groups,
- random walks on groups,
- •

Irreducible representations of symmetric groups

Irreducible representations ρ^{λ} of symmetric group S(n) are indexed by Young diagrams λ having n boxes.

Very combinatorial object, not good for asymptotic problems.

Dilations of diagrams

$$\Sigma_\pi^\lambda =$$

$$\Sigma_\pi^\lambda =$$

$$\frac{\operatorname{Tr}
ho^{\lambda}(\pi)}{}$$
 .

$$\Sigma_\pi^\lambda = rac{{
m Tr}\,
ho^\lambda(\pi)}{{
m dimension \ of \ }
ho^\lambda}.$$

$$\Sigma_{\pi}^{\lambda} = \underbrace{n(n-1)\cdots(n-k+1)}_{k \; \text{factors}} \frac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{dimension of} \; \rho^{\lambda}}.$$

For $\pi \in S(k)$ and irreducible representation ρ^{λ} of S(n) (assume $k \leq n$) we define the normalized character

$$\Sigma_{\pi}^{\lambda} = \underbrace{n(n-1)\cdots(n-k+1)}_{k \; \text{factors}} \frac{\operatorname{Tr} \rho^{\lambda}(\pi)}{\operatorname{dimension of} \; \rho^{\lambda}}.$$

Most interesting case: characters on cycles

$$\Sigma_k^{\lambda} = \Sigma_{(1,2,\dots,k)}^{\lambda}.$$

For $\pi \in S(k)$ and irreducible representation ρ^{λ} of S(n) (assume $k \leq n$) we define the normalized character

$$\Sigma_{\pi}^{\lambda} = \underbrace{\mathit{n}(\mathit{n}-1)\cdots(\mathit{n}-\mathit{k}+1)}_{\mathit{k} \; \mathsf{factors}} \frac{\mathsf{Tr} \, \rho^{\lambda}(\pi)}{\mathsf{dimension} \; \mathsf{of} \; \rho^{\lambda}}.$$

Most interesting case: characters on cycles

$$\Sigma_k^{\lambda} = \Sigma_{(1,2,\ldots,k)}^{\lambda}.$$

Problem

For fixed $k \geq 1$ what can we say about $\sum_{k}^{s\lambda}$ for $s \to \infty$?

The map $s\mapsto \Sigma_{k-1}^{s\lambda}$ is a polynomial of degree k.

The map $s\mapsto \Sigma_{k-1}^{s\lambda}$ is a polynomial of degree k.

We define free cumulants $R_2^{\lambda}, R_3^{\lambda}, \ldots$ of diagram λ to be

The map $s\mapsto \Sigma_{k-1}^{s\lambda}$ is a polynomial of degree k. We define free cumulants $R_2^\lambda,R_3^\lambda,\ldots$ of diagram λ to be asymptotically the dominant terms of the character on cycles:

The map $s\mapsto \sum_{k=1}^{s\lambda}$ is a polynomial of degree k. We define free cumulants $R_2^{\lambda}, R_3^{\lambda}, \ldots$ of diagram λ to be asymptotically the dominant terms of the character on cycles:

$$R_k^{\lambda} = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{k-1}^{s\lambda} = [s^k] \Sigma_{k-1}^{s\lambda}.$$

The map $s\mapsto \Sigma_{k-1}^{\mathtt{s}\lambda}$ is a polynomial of degree k.

We define free cumulants $R_2^{\lambda}, R_3^{\lambda}, \ldots$ of diagram λ to be asymptotically the dominant terms of the character on cycles:

$$R_k^{\lambda} = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{k-1}^{s\lambda} = [s^k] \Sigma_{k-1}^{s\lambda}.$$

Advertisement

Free cumulants are very very nice quantities to describe a Young diagram:

The map $s\mapsto \sum_{k=1}^{s\lambda}$ is a polynomial of degree k. We define free cumulants $R_2^{\lambda}, R_3^{\lambda}, \ldots$ of diagram λ to be asymptotically the dominant terms of the character on cycles:

$$R_k^{\lambda} = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{k-1}^{s\lambda} = [s^k] \Sigma_{k-1}^{s\lambda}.$$

Advertisement

Free cumulants are very very nice quantities to describe a Young diagram: they can be explicitly calculated in several approaches

The map $s\mapsto \Sigma_{k-1}^{s\lambda}$ is a polynomial of degree k. We define free cumulants $R_2^{\lambda}, R_3^{\lambda}, \ldots$ of diagram λ to be asymptotically the dominant terms of the character on cycles:

$$R_k^{\lambda} = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{k-1}^{s\lambda} = [s^k] \Sigma_{k-1}^{s\lambda}.$$

Advertisement

Free cumulants are very very nice quantities to describe a Young diagram: they can be explicitly calculated in several approaches and are very useful in asymptotic representation theory.

The map $s \mapsto \sum_{k=1}^{s\lambda}$ is a polynomial of degree k. We define free cumulants $R_2^{\lambda}, R_3^{\lambda}, \ldots$ of diagram λ to be

asymptotically the dominant terms of the character on cycles:

$$R_k^{\lambda} = \lim_{s \to \infty} \frac{1}{s^k} \Sigma_{k-1}^{s\lambda} = [s^k] \Sigma_{k-1}^{s\lambda}.$$

Advertisement

Free cumulants are very very nice quantities to describe a Young diagram: they can be explicitly calculated in several approaches and are very useful in asymptotic representation theory.

Free cumulants are homogeneous with respect to dilations:

$$R_k^{s\lambda} = s^k R_k^{\lambda}$$
.

Plan

- Representations of symmetric groups
- Merov character polynomials
 - Kerov polynomials
 - Combinatorics of Kerov polynomials
 - Applications of the main result
- Open problems
- Proof of Kerov conjecture

Kerov polynomials

Free cumulants give approximations of characters:

$$\Sigma_k \approx R_{k+1},$$

Kerov polynomials

Free cumulants give approximations of characters:

$$\Sigma_k \approx R_{k+1}$$

but they can also give exact values of characters thanks to Kerov character polynomials:

Kerov polynomials

Free cumulants give approximations of characters:

$$\Sigma_k \approx R_{k+1}$$

but they can also give exact values of characters thanks to Kerov character polynomials:

$$\Sigma_1 = R_2,$$
 $\Sigma_2 = R_3,$
 $\Sigma_3 = R_4 + R_2,$
 $\Sigma_4 = R_5 + 5R_3,$
 $\Sigma_5 = R_6 + 15R_4 + 5R_2^2 + 8R_2,$
 $\Sigma_6 = R_7 + 35R_5 + 35R_3R_2 + 84R_3.$

Theorem/Conjecture (Kerov)

For each $k \geq 1$ there exists a universal polynomial $K_k(R_2, R_3, ...)$ with integer coefficients called Kerov character polynomial such that

$$\Sigma_k = K_k(R_2, R_3, \dots)$$

Theorem/Conjecture (Kerov)

For each $k \geq 1$ there exists a universal polynomial $K_k(R_2, R_3, ...)$ with non-negative integer coefficients called Kerov character polynomial such that

$$\Sigma_k = K_k(R_2, R_3, \dots)$$

Theorem/Conjecture (Kerov)

For each $k \geq 1$ there exists a universal polynomial $K_k(R_2, R_3, ...)$ with non-negative integer coefficients called Kerov character polynomial such that

$$\Sigma_k = K_k(R_2, R_3, \dots)$$

What is the combinatorial interpretation of coefficients?

Theorem/Conjecture (Kerov)

For each $k \geq 1$ there exists a universal polynomial $K_k(R_2, R_3, ...)$ with non-negative integer coefficients called Kerov character polynomial such that

$$\Sigma_k = K_k(R_2, R_3, \dots)$$

What is the combinatorial interpretation of coefficients?

Féray: Kerov's conjecture is true, coefficients have a complicated combinatorial interpretation.

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Biane and Stanley)

The coefficient $[R_\ell]K_k$

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Biane and Stanley)

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Biane and Stanley)

•
$$\sigma_1, \sigma_2 \in S(k)$$

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Biane and Stanley)

•
$$\sigma_1, \sigma_2 \in S(k)$$
 are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Biane and Stanley)

- $\sigma_1, \sigma_2 \in S(k)$ are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,
- $|C(\sigma_2)| = 1$,

Linear terms of Kerov polynomials

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Biane and Stanley)

The coefficient $[R_{\ell}]K_k$ is equal to the number of pairs (σ_1, σ_2) where

- ullet $\sigma_1,\sigma_2\in S(k)$ are such that $\sigma_1\circ\sigma_2=(1,2,\ldots,k)$,
- $|C(\sigma_2)| = 1$,
- $|C(\sigma_1)| + |C(\sigma_2)| = \ell.$

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

The coefficient $[R_{\ell_1}R_{\ell_2}]K_k$

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

•
$$\sigma_1, \sigma_2 \in S(k)$$
 are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

- ullet $\sigma_1,\sigma_2\in S(k)$ are such that $\sigma_1\circ\sigma_2=(1,2,\ldots,k)$,
- $|C(\sigma_2)| = 2$,

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

- ullet $\sigma_1,\sigma_2\in S(k)$ are such that $\sigma_1\circ\sigma_2=(1,2,\ldots,k)$,
- $|C(\sigma_2)| = 2,$
- $|C(\sigma_1)| + |C(\sigma_2)| = \ell_1 + \ell_2$,

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

- $\sigma_1, \sigma_2 \in S(k)$ are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,
- $|C(\sigma_2)| = 2$,
- $|C(\sigma_1)| + |C(\sigma_2)| = \ell_1 + \ell_2$,
- $q: C(\sigma_2) \rightarrow \{\ell_1, \ell_2\}$ is a surjective map on cycles of σ_2 ;

For a permutation π we denote by $C(\pi)$ the set of cycles of π .

Theorem (Féray)

- ullet $\sigma_1,\sigma_2\in S(k)$ are such that $\sigma_1\circ\sigma_2=(1,2,\ldots,k)$,
- $|C(\sigma_2)| = 2$,
- $|C(\sigma_1)| + |C(\sigma_2)| = \ell_1 + \ell_2$,
- $q: C(\sigma_2) \rightarrow \{\ell_1, \ell_2\}$ is a surjective map on cycles of σ_2 ;
- for each cycle c of σ_2 there are more than q(c)-1 cycles of σ_1 which intersect nontrivially c.

Theorem (Dołęga, Féray, Śniady)

Theorem (Dołęga, Féray, Śniady)

$$ullet$$
 $\sigma_1,\sigma_2\in S(k)$ are such that $\sigma_1\circ\sigma_2=(1,2,\ldots,k)$,

Theorem (Dołęga, Féray, Śniady)

- $\sigma_1, \sigma_2 \in S(k)$ are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,
- $|C(\sigma_2)| = s_2 + s_3 + \cdots$,

Theorem (Dołęga, Féray, Śniady)

- $\sigma_1, \sigma_2 \in S(k)$ are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,
- $|C(\sigma_2)| = s_2 + s_3 + \cdots,$
- $|C(\sigma_1)| + |C(\sigma_2)| = 2s_2 + 3s_3 + 4s_4 + \cdots$,

Theorem (Dołęga, Féray, Śniady)

- $\sigma_1, \sigma_2 \in S(k)$ are such that $\sigma_1 \circ \sigma_2 = (1, 2, \dots, k)$,
- $|C(\sigma_2)| = s_2 + s_3 + \cdots$,
- $|C(\sigma_1)| + |C(\sigma_2)| = 2s_2 + 3s_3 + 4s_4 + \cdots$,
- $q: C(\sigma_2) \rightarrow \{2,3,...\}$ is a coloring such that each color $i \in \{2,3,...\}$ is used s_i times,

Theorem (Dołęga, Féray, Śniady)

- \bullet $\sigma_1,\sigma_2\in S(k)$ are such that $\sigma_1\circ\sigma_2=(1,2,\ldots,k)$,
- $|C(\sigma_2)| = s_2 + s_3 + \cdots$,
- $|C(\sigma_1)| + |C(\sigma_2)| = 2s_2 + 3s_3 + 4s_4 + \cdots$,
- $q: C(\sigma_2) \rightarrow \{2,3,...\}$ is a coloring such that each color $i \in \{2,3,...\}$ is used s_i times,
- for every nontrivial set $\emptyset \subsetneq A \subsetneq C(\sigma_2)$ of cycles of σ_2 there are more than $\sum_{c \in A} (q(c) 1)$ cycles of σ_1 which intersect $\bigcup A$.

Example: coefficient $[R_2^2 R_3] K_k$.

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1, σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls).

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1, σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls). We draw an edge if two cycles intersect (boy is allowed to marry a girl).

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1,σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls). We draw an edge if two cycles intersect (boy is allowed to marry a girl). Each boy wants to marry one girl

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1,σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls). We draw an edge if two cycles intersect (boy is allowed to marry a girl). Each boy wants to marry one girl and each girl $g \in \mathcal{C}(\sigma_2)$ wants to marry q(g)-1 boys.

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1,σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls). We draw an edge if two cycles intersect (boy is allowed to marry a girl). Each boy wants to marry one girl and each girl $g \in C(\sigma_2)$ wants to marry q(g)-1 boys.

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1,σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls). We draw an edge if two cycles intersect (boy is allowed to marry a girl). Each boy wants to marry one girl and each girl $g \in \mathcal{C}(\sigma_2)$ wants to marry q(g)-1 boys. We require that it is possible to arrange marriages

Example: coefficient $[R_2^2R_3]K_k$. For given σ_1, σ_2 we consider a bipartite graph $\mathcal{V}_{\sigma_1,\sigma_2}$ with the vertices corresponding to cycles of σ_1 (boys) and cycles of σ_2 (girls). We draw an edge if two cycles intersect (boy is allowed to marry a girl). Each boy wants to marry one girl and each girl $g \in \mathcal{C}(\sigma_2)$ wants to marry q(g)-1 boys. We require that it is possible to arrange marriages

Restriction on graphs

Corollary

If there exists an disconnecting edge with at least one girl in both components then the factorization cannot contribute (no matter which labeling we choose).

Application: coefficients of Kerov polynomials are small.

Applications of the main result

- positivity: Kerov polynomials give characters as simple sums without too many cancellations,
- optimal estimates for characters,
- more information on the structure of Kerov polynomials (Lassalle's conjectures)

Plan

- Representations of symmetric groups
- Kerov character polynomials
- Open problems
 - Exotic interpretations of Kerov polynomials
 - Open problems
- Proof of Kerov conjecture

Conjecture

Maybe coefficients of Kerov polynomials

Conjecture

Maybe coefficients of Kerov polynomials

 are equal to dimensions of some intersection (co)homologies of Schubert varieties? [conjecture of Philippe Biane]

Conjecture

Maybe coefficients of Kerov polynomials

- are equal to dimensions of some intersection (co)homologies of Schubert varieties? [conjecture of Philippe Biane]
- are equal to something related to moduli space of analytic maps on Riemann surfaces?

Conjecture

Maybe coefficients of Kerov polynomials

- are equal to dimensions of some intersection (co)homologies of Schubert varieties? [conjecture of Philippe Biane]
- are equal to something related to moduli space of analytic maps on Riemann surfaces? or ramified coverings of a sphere? [conjecture of Śniady]

Exotic interpretations of Kerov polynomials

Conjecture

Maybe coefficients of Kerov polynomials

- are equal to dimensions of some intersection (co)homologies of Schubert varieties? [conjecture of Philippe Biane]
- are equal to something related to moduli space of analytic maps on Riemann surfaces? or ramified coverings of a sphere? [conjecture of Śniady]
- are algebraic solutions to some integrable hierarchy (Toda?) and their coefficients are related to the tau function of the hierarchy? [conjecture of Jonathan Novak]

• free cumulants originally come from Voiculescu's free probability theory / random matrix theory...

 free cumulants originally come from Voiculescu's free probability theory / random matrix theory... is there some analogue of Kerov character polynomials in the random matrix theory

 free cumulants originally come from Voiculescu's free probability theory / random matrix theory...
 is there some analogue of Kerov character polynomials in the random matrix theory / respresentation theory of the unitary groups U(d)?

- free cumulants originally come from Voiculescu's free probability theory / random matrix theory... is there some analogue of Kerov character polynomials in the random matrix theory / respresentation theory of the unitary groups U(d)?
- is it possible to study Kerov polynomials in such a scaling that phenomena of universality of random matrices occur?

- free cumulants originally come from Voiculescu's free probability theory / random matrix theory... is there some analogue of Kerov character polynomials in the random matrix theory / respresentation theory of the unitary groups U(d)?
- is it possible to study Kerov polynomials in such a scaling that phenomena of universality of random matrices occur?
- the structure of Kerov polynomials is still not clear (Goulden-Rattan conjecture, Lassalle's conjectures)

Conjecture: C-expansion of characters

Subdominant term of the character:

$$C_{k-1}^{\lambda} = \lim_{s \to \infty} \frac{1}{s^{k-1}} \left(\Sigma_k^{s\lambda} - R_{k+1}^{s\lambda} \right) = [s^{k-1}] \left(\Sigma_k^{s\lambda} - R_{k+1}^{s\lambda} \right)$$

Conjecture: C-expansion of characters

Subdominant term of the character:

$$C_{k-1}^{\lambda} = \lim_{s \to \infty} \frac{1}{s^{k-1}} \left(\Sigma_k^{s\lambda} - R_{k+1}^{s\lambda} \right) = [s^{k-1}] \left(\Sigma_k^{s\lambda} - R_{k+1}^{s\lambda} \right)$$

Conjecture (Goulden and Rattan)

For each $k \ge 1$ there exists a universal polynomial L_k called Goulden-Rattan polynomial with rational (non-negative?) coefficients (with relatively small denominators?) such that

$$\Sigma_k - R_{k+1} = L_k(C_2, C_3, \dots).$$

Plan

- Representations of symmetric groups
- Kerov character polynomials
- Open problems
- Proof of Kerov conjecture
 - Fundamental functionals S_2, S_3, \ldots of shape
 - Stanley polynomials
 - Toy example: quadratic terms of Kerov polynomials

$$contents_{(x,y)} = x - y$$

Fundamental functionals of shape of λ :

$$S_n^{\lambda} = (n-1) \iint_{(x,y) \in \lambda} (\operatorname{contents}_{(x,y)})^{n-2} dx dy$$

$$contents_{(x,y)} = x - y$$

Fundamental functionals of shape of λ :

$$S_n^{\lambda} = (n-1) \iint_{(x,y) \in \lambda} (\text{contents}_{(x,y)})^{n-2} dx dy$$

easy to compute,

$$contents_{(x,y)} = x - y$$

Fundamental functionals of shape of λ :

$$S_n^{\lambda} = (n-1) \iint_{(x,y) \in \lambda} (\text{contents}_{(x,y)})^{n-2} dx dy$$

- easy to compute,
- homogeneous: $S_n^{s\lambda} = s^n S_n^{\lambda}$,

$$contents_{(x,y)} = x - y$$

Fundamental functionals of shape of λ :

$$S_n^{\lambda} = (n-1) \iint_{(x,y) \in \lambda} (\text{contents}_{(x,y)})^{n-2} dx dy$$

- easy to compute,
- homogeneous: $S_n^{s\lambda} = s^n S_n^{\lambda}$
- there are explicit formulas which express functionals S_2, S_3, \ldots in terms of free cumulants R_2, R_3, \ldots and conversely...

 $contents_{(x,y)} = x - y$

$$S_n^{\lambda} = (n-1) \iint_{(x,y) \in \lambda} (\text{contents}_{(x,y)})^{n-2} dx dy$$

- easy to compute,
- homogeneous: $S_n^{s\lambda} = s^n S_n^{\lambda}$,
- there are explicit formulas which express functionals S_2, S_3, \ldots in terms of free cumulants R_2, R_3, \ldots and conversely...therefore free cumulants can be explicitly calculated from the shape of a Young diagram!

Relation between functionals $S_2, S_3, ...$ and free cumulants $R_2, R_3, ...$

$$S_{n} = \sum_{l \geq 1} \frac{1}{l!} (n-1)_{l-1} \sum_{\substack{k_{1}, \dots, k_{l} \geq 2 \\ k_{1} + \dots + k_{l} = n}} R_{k_{1}} \cdots R_{k_{l}},$$

$$R_{n} = \sum_{l \geq 1} \frac{1}{l!} (-n+1)^{l-1} \sum_{\substack{k_{1}, \dots, k_{l} \geq 2 \\ k_{1} + \dots + k_{l} = n}} S_{k_{1}} \cdots S_{k_{l}},$$

Relation between functionals S_2, S_3, \ldots and free cumulants R_2, R_3, \ldots

$$S_{n} = \sum_{l \geq 1} \frac{1}{l!} (n-1)_{l-1} \sum_{\substack{k_{1}, \dots, k_{l} \geq 2 \\ k_{1} + \dots + k_{l} = n}} R_{k_{1}} \cdots R_{k_{l}},$$

$$R_{n} = \sum_{l \geq 1} \frac{1}{l!} (-n+1)^{l-1} \sum_{\substack{k_{1}, \dots, k_{l} \geq 2 \\ k_{1} + \dots + k_{l} = n}} S_{k_{1}} \cdots S_{k_{l}},$$

Example:

$$\frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}\mathcal{F} = \frac{\partial^2}{\partial S_{k_1}\partial S_{k_2}}\mathcal{F} + (k_1 + k_2 - 1)\frac{\partial}{\partial S_{k_1 + k_2}}\mathcal{F}.$$

All derivatives at $R_2 = R_3 = \cdots = S_2 = S_3 = \cdots = 0$.

Stanley polynomials

For numbers $p_1, p_2, \ldots, q_1, q_2, \ldots$ we consider multirectangular (generalized) Young diagram $\mathbf{p} \times \mathbf{q}$.

Stanley polynomials

For numbers $p_1, p_2, \ldots, q_1, q_2, \ldots$ we consider multirectangular (generalized) Young diagram $\mathbf{p} \times \mathbf{q}$.

Theorem (conjectured by Stanley, proved by Féray)

For any permutation π the normalized character $\Sigma_{\pi}^{\mathbf{p} \times \mathbf{q}}$ is a polynomial in $p_1, p_2, \ldots, q_1, q_2, \ldots$, called Stanley polynomial, for which there is an explicit formula.

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in \mathcal{S}(\mathbf{n}) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\phi_2 : C(\sigma_2) \to \mathbb{N}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\substack{\phi_2 : C(\sigma_2) \to \mathbb{N}}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\phi_2 : C(\sigma_2) \to \mathbb{N}} (-1)^{\sigma_1} \cdot \prod_{\mathbf{b} \in C(\sigma_1)} q_{\phi_1(\mathbf{b})} \cdot \prod_{\mathbf{c} \in C(\sigma_2)} p_{\phi_2(\mathbf{c})},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\phi_2 : C(\sigma_2) \to \mathbb{N}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\substack{\phi_2 : C(\sigma_2) \to \mathbb{N}}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\phi_2 : C(\sigma_2) \to \mathbb{N}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\phi_2 : C(\sigma_2) \to \mathbb{N}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

Theorem (conjectured by Stanley, proved by Féray)

For
$$\pi \in S(n)$$

$$\Sigma^{\mathbf{p} \times \mathbf{q}}_{\pi} = \sum_{\substack{\sigma_1, \sigma_2 \in S(n) \\ \sigma_1 \circ \sigma_2 = \pi}} \sum_{\phi_2 : C(\sigma_2) \to \mathbb{N}} (-1)^{\sigma_1} \cdot \prod_{b \in C(\sigma_1)} q_{\phi_1(b)} \cdot \prod_{c \in C(\sigma_2)} p_{\phi_2(c)},$$

where coloring $\phi_1: \mathcal{C}(\sigma_1) \to \mathbb{N}$ is defined by

$$\phi_1(c) = \max_{\substack{b \in C(\sigma_2), \\ b \text{ and } c \text{ intersect}}} \phi_2(b) \qquad \text{for } c \in C(\sigma_1)$$

The Stanley polynomial depends on the graph $\mathcal{V}_{\sigma_1,\sigma_2}$.

Corollary

For
$$\pi \in S(n)$$

is equal to the number of factorizations $\pi = \sigma_1 \circ \sigma_2$ such that

 $(-1)[p_1q_1^ip_2q_2^j]\Sigma_{\pi}^{\mathbf{p}\times\mathbf{q}}$

Corollary

For
$$\pi \in S(n)$$

$$(-1)[p_1q_1^ip_2q_2^j]\Sigma_\pi^{\mathbf{p} imes\mathbf{q}}$$

is equal to the number of factorizations $\pi=\sigma_1\circ\sigma_2$ such that

•
$$\sigma_1$$
 has $i + j$ cycles,

Corollary

For
$$\pi \in S(n)$$

$$(-1)[p_1q_1^ip_2q_2^j]\Sigma_{\pi}^{\mathbf{p} \times \mathbf{q}}$$

is equal to the number of factorizations $\pi = \sigma_1 \circ \sigma_2$ such that

- σ_1 has i+j cycles,
- $\sigma_2 = \{c_1, c_2\}$ has two (labeled) cycles,

Corollary

For
$$\pi \in S(n)$$

$$(-1)[p_1q_1^ip_2q_2^j]\Sigma_{\pi}^{\mathbf{p} \times \mathbf{q}}$$

is equal to the number of factorizations $\pi = \sigma_1 \circ \sigma_2$ such that

- σ_1 has i+j cycles,
- $\sigma_2 = \{c_1, c_2\}$ has two (labeled) cycles,
- there are exactly j cycles of σ_1 which intersect c_2 .

Corollary

For
$$\pi \in S(n)$$

$$(-1)[p_1q_1^ip_2q_2^j]\Sigma_\pi^{\mathbf{p} imes\mathbf{q}}$$

is equal to the number of factorizations $\pi=\sigma_1\circ\sigma_2$ such that

- σ_1 has i + j cycles,
- $\sigma_2 = \{c_1, c_2\}$ has two (labeled) cycles,
- there are exactly j cycles of σ_1 which intersect c_2 .

The Stanley polynomial depends on the graph $\mathcal{V}_{\sigma_1,\sigma_2}$.

Stanley polynomials and functionals S_2, S_3, \ldots

Theorem

If \mathcal{F} is a sufficiently nice function on the set of generalized Young diagrams then it as a polynomial in S_2, S_3, \ldots

$$\frac{\partial}{\partial S_{k_1}} \cdots \frac{\partial}{\partial S_{k_l}} \mathcal{F} \bigg|_{S_2 = S_3 = \cdots = 0} = [p_1 q_1^{k_1 - 1} \cdots p_l q_l^{k_l - 1}] \mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

Stanley polynomials and functionals S_2, S_3, \ldots

Theorem

If \mathcal{F} is a sufficiently nice function on the set of generalized Young diagrams then it as a polynomial in S_2, S_3, \ldots

$$\frac{\partial}{\partial S_{k_1}} \cdots \frac{\partial}{\partial S_{k_l}} \mathcal{F} \bigg|_{S_2 = S_3 = \cdots = 0} = [p_1 q_1^{k_1 - 1} \cdots p_l q_l^{k_l - 1}] \mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

• Therefore expansion of Σ_{π} in terms of S_2, S_3, \ldots can be extracted from Stanley polynomials.

Stanley polynomials and functionals S_2, S_3, \ldots

Theorem

If \mathcal{F} is a sufficiently nice function on the set of generalized Young diagrams then it as a polynomial in S_2, S_3, \ldots

$$\frac{\partial}{\partial S_{k_1}} \cdots \frac{\partial}{\partial S_{k_l}} \mathcal{F} \bigg|_{S_2 = S_3 = \cdots = 0} = [p_1 q_1^{k_1 - 1} \cdots p_l q_l^{k_l - 1}] \mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

- Therefore expansion of Σ_{π} in terms of S_2, S_3, \ldots can be extracted from Stanley polynomials.
- Stanley polynomials are explicitly given by Stanley-Féray formula and depend on geometry of bipartite graphs $\mathcal{V}_{\sigma_1,\sigma_2}$.

Stanley polynomials and functionals S_2, S_3, \ldots

Theorem

If \mathcal{F} is a sufficiently nice function on the set of generalized Young diagrams then it as a polynomial in S_2, S_3, \ldots

$$\frac{\partial}{\partial S_{k_1}} \cdots \frac{\partial}{\partial S_{k_l}} \mathcal{F} \bigg|_{S_2 = S_3 = \cdots = 0} = [p_1 q_1^{k_1 - 1} \cdots p_l q_l^{k_l - 1}] \mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

- Therefore expansion of Σ_{π} in terms of S_2, S_3, \ldots can be extracted from Stanley polynomials.
- Stanley polynomials are explicitly given by Stanley-Féray formula and depend on geometry of bipartite graphs V_{σ_1,σ_2} .
- Once we know the expansion of Σ_{π} in terms of S_2, S_3, \ldots we can find expansion of Σ_{π} in terms of free cumulants R_2, R_3, \ldots

Free cumulants vs fundamental functionals

Free cumulants R_2, R_3, \ldots

Functionals S_2, S_3, \ldots

Free cumulants vs fundamental functionals

Free cumulants R_2, R_3, \ldots

 describe Young diagram in language of representation theory

Functionals S_2, S_3, \ldots

 describe Young diagram in language of its shape

Free cumulants vs fundamental functionals

Free cumulants R_2, R_3, \ldots

- describe Young diagram in language of representation theory
- best quantities for calculating characters

Functionals S_2, S_3, \ldots

- describe Young diagram in language of its shape
- directly related to Stanley polynomials

$$\frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}\mathcal{F} =$$

$$\frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}\mathcal{F} = \frac{\partial^2}{\partial S_{k_1}\partial S_{k_2}}\mathcal{F} + (k_1 + k_2 - 1)\frac{\partial}{\partial S_{k_1 + k_2}}\mathcal{F} =$$

$$\begin{split} \frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}\mathcal{F} &= \frac{\partial^2}{\partial S_{k_1}\partial S_{k_2}}\mathcal{F} + (k_1+k_2-1)\frac{\partial}{\partial S_{k_1+k_2}}\mathcal{F} = \\ [p_1p_2q_1^{k_1-1}q_2^{k_2-1}]\mathcal{F}^{\mathbf{p}\times\mathbf{q}} &+ (k_1+k_2-1)[p_1q_1^{k_1+k_2-1}]\mathcal{F}^{\mathbf{p}\times\mathbf{q}} = \end{split}$$

$$\begin{split} \frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}\mathcal{F} &= \frac{\partial^2}{\partial S_{k_1}\partial S_{k_2}}\mathcal{F} + (k_1+k_2-1)\frac{\partial}{\partial S_{k_1+k_2}}\mathcal{F} = \\ [p_1p_2q_1^{k_1-1}q_2^{k_2-1}]\mathcal{F}^{\mathbf{p}\times\mathbf{q}} &+ (k_1+k_2-1)[p_1q_1^{k_1+k_2-1}]\mathcal{F}^{\mathbf{p}\times\mathbf{q}} = \end{split}$$

$$\frac{\partial^{2}}{\partial R_{k_{1}}\partial R_{k_{2}}}\mathcal{F} = \frac{\partial^{2}}{\partial S_{k_{1}}\partial S_{k_{2}}}\mathcal{F} + (k_{1} + k_{2} - 1)\frac{\partial}{\partial S_{k_{1} + k_{2}}}\mathcal{F} =$$

$$[p_{1}p_{2}q_{1}^{k_{1} - 1}q_{2}^{k_{2} - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} + (k_{1} + k_{2} - 1)[p_{1}q_{1}^{k_{1} + k_{2} - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} =$$

$$[p_{1}p_{2}q_{1}^{k_{1} - 1}q_{2}^{k_{2} - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} - [p_{1}p_{2}q_{2}^{k_{1} + k_{2} - 2}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

$$\frac{\partial^{2}}{\partial R_{k_{1}}\partial R_{k_{2}}}\mathcal{F} = \frac{\partial^{2}}{\partial S_{k_{1}}\partial S_{k_{2}}}\mathcal{F} + (k_{1} + k_{2} - 1)\frac{\partial}{\partial S_{k_{1} + k_{2}}}\mathcal{F} =$$

$$[p_{1}p_{2}q_{1}^{k_{1} - 1}q_{2}^{k_{2} - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} + (k_{1} + k_{2} - 1)[p_{1}q_{1}^{k_{1} + k_{2} - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} =$$

$$[p_{1}p_{2}q_{1}^{k_{1} - 1}q_{2}^{k_{2} - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} - [p_{1}p_{2}q_{2}^{k_{1} + k_{2} - 2}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

$$\frac{\partial^2}{\partial R_{k_1}\partial R_{k_2}}\mathcal{F} = \frac{\partial^2}{\partial S_{k_1}\partial S_{k_2}}\mathcal{F} + (k_1 + k_2 - 1)\frac{\partial}{\partial S_{k_1 + k_2}}\mathcal{F} =$$

$$[p_1p_2q_1^{k_1 - 1}q_2^{k_2 - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} + (k_1 + k_2 - 1)[p_1q_1^{k_1 + k_2 - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} =$$

$$[p_1p_2q_1^{k_1 - 1}q_2^{k_2 - 1}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}} - [p_1p_2q_2^{k_1 + k_2 - 2}]\mathcal{F}^{\mathbf{p} \times \mathbf{q}}$$

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, ..., n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1, c_2\}$ has two cycles.

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, \dots, n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1, c_2\}$ has two cycles. #(fact. such that c_1 has $\geq k_1$ friends, c_2 has $\geq k_2$ friends) =

```
We are interested in factorizations \sigma_1 \circ \sigma_2 = (1, \ldots, n) such that \sigma_1 has k_1 + k_2 - 2 cycles and \sigma_2 = \{c_1, c_2\} has two cycles. #(fact. such that c_1 has \geq k_1 friends, c_2 has \geq k_2 friends) = #(all fact.)
```

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, \ldots, n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1, c_2\}$ has two cycles. #(fact. such that c_1 has $\geq k_1$ friends, c_2 has $\geq k_2$ friends) = #(all fact.) - #(fact. such that c_1 has $\leq k_1 - 1$ friends)

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, \ldots, n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1, c_2\}$ has two cycles. #(fact. such that c_1 has $\geq k_1$ friends, c_2 has $\geq k_2$ friends) = #(all fact.) - #(fact. such that c_1 has $\leq k_1 - 1$ friends) $-\#(\text{fact. such that } c_2 \text{ has } \leq k_2 - 1 \text{ friends})$

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1,\ldots,n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1,c_2\}$ has two cycles. #(fact. such that c_1 has $\geq k_1$ friends, c_2 has $\geq k_2$ friends) = #(all fact.) - #(fact. such that c_1 has $\leq k_1 - 1$ friends) - #(fact. such that c_2 has $\leq k_2 - 1$ friends) = $(-1) \sum_{\substack{i+j=k_1+k_2-2,\\1 < j}} \left[p_1 p_2 q_1^i q_2^j \right] \Sigma_k^{\mathbf{p} \times \mathbf{q}}$

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1,\ldots,n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1,c_2\}$ has two cycles. #(fact. such that c_1 has $\geq k_1$ friends, c_2 has $\geq k_2$ friends) = #(all fact.) - #(fact. such that c_1 has $\leq k_1 - 1$ friends) - #(fact. such that c_2 has $\leq k_2 - 1$ friends) = $(-1) \sum_{\substack{i+j=k_1+k_2-2,\\1 \leq i}} \left[p_1 p_2 q_1^i q_2^j \right] \sum_{k}^{\mathbf{p} \times \mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2,\\1 \leq i \leq k_1-1}} \left[p_1 p_2 q_1^j q_2^i \right] \sum_{k}^{\mathbf{p} \times \mathbf{q}}$

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, \ldots, n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1, c_2\}$ has two cycles. $\#(\text{fact. such that } c_1 \text{ has } \geq k_1 \text{ friends, } c_2 \text{ has } > k_2 \text{ friends}) =$ $\#(\text{all fact.}) - \#(\text{fact. such that } c_1 \text{ has } \leq k_1 - 1 \text{ friends})$ $-\#(\text{fact. such that } c_2 \text{ has } < k_2 - 1 \text{ friends}) =$ $(-1) \sum_{\substack{i+j=k_1+k_2-2,\\1\leq j}} \left[p_1 p_2 q_1^i q_2^j \right] \Sigma_k^{\mathbf{p}\times\mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2,\\1\leq i\leq k_1-1}} \left[p_1 p_2 q_1^j q_2^j \right] \Sigma_k^{\mathbf{p}\times\mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2,\\1\leq i\leq k_1-1}} \left[p_1 p_2 q_1^i q_2^j \right] \Sigma_k^{\mathbf{p}\times\mathbf{q}}$

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, \ldots, n)$ such that σ_1 has $k_1 + k_2 - 2$ cycles and $\sigma_2 = \{c_1, c_2\}$ has two cycles. $\#(\text{fact. such that } c_1 \text{ has } > k_1 \text{ friends, } c_2 \text{ has } > k_2 \text{ friends}) =$ $\#(\text{all fact.}) - \#(\text{fact. such that } c_1 \text{ has } \leq k_1 - 1 \text{ friends})$ $-\#(\text{fact. such that } c_2 \text{ has } < k_2 - 1 \text{ friends}) =$ $(-1) \sum_{\substack{i+j=k_1+k_2-2,\\1\leq j}} \left[p_1 p_2 q_1^i q_2^j \right] \boldsymbol{\Sigma}_k^{\mathbf{p}\times\mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2,\\1\leq i\leq k_1-1}} \left[p_1 p_2 q_1^j q_2^i \right] \boldsymbol{\Sigma}_k^{\mathbf{p}\times\mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2,\\1\leq i\leq k_1-1}} \left[p_1 p_2 q_1^i q_2^j \right] \boldsymbol{\Sigma}_k^{\mathbf{p}\times\mathbf{q}} =$ $[p_1p_2q_1^{k_1-1}q_2^{k_2-1}]\sum_{p=0}^{p\times q} - [p_1p_2q_2^{k_1+k_2-2}]\sum_{p=0}^{p\times q} =$

$$\sigma_1 \text{ has } k_1 + k_2 - 2 \text{ cycles and } \sigma_2 = \{c_1, c_2\} \text{ has two cycles.} \\ \#(\text{fact. such that } c_1 \text{ has } \geq k_1 \text{ friends, } c_2 \text{ has } \geq k_2 \text{ friends}) = \\ \#(\text{all fact.}) - \#(\text{fact. such that } c_1 \text{ has } \leq k_1 - 1 \text{ friends}) \\ - \#(\text{fact. such that } c_2 \text{ has } \leq k_2 - 1 \text{ friends}) = \\ (-1) \sum_{i+j=k_1+k_2-2,} \left[p_1 p_2 q_1^i q_2^j \right] \sum_k^{\mathbf{p} \times \mathbf{q}} + \sum_{\substack{i+j=k_1+k_2-2,\\1\leq i \leq k_1-1}} \left[p_1 p_2 q_1^i q_2^i \right] \sum_k^{\mathbf{p} \times \mathbf{q}} \\ + \sum_{\substack{i+j=k_1+k_2-2,\\1\leq j \leq k_2-1}} \left[p_1 p_2 q_1^i q_2^j \right] \sum_k^{\mathbf{p} \times \mathbf{q}} = \\ \left[p_1 p_2 q_1^{k_1-1} q_2^{k_2-1} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} - \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} = \frac{\partial^2}{\partial R_{k_1} \partial R_{k_2}} \sum_n \\ \left[p_1 p_2 q_1^{k_1-1} q_2^{k_2-1} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} - \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} = \frac{\partial^2}{\partial R_{k_1} \partial R_{k_2}} \sum_n \\ \left[p_1 p_2 q_1^{k_1-1} q_2^{k_2-1} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} - \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} = \frac{\partial^2}{\partial R_{k_1} \partial R_{k_2}} \sum_n \\ \left[p_1 p_2 q_1^{k_1-1} q_2^{k_2-1} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} - \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} = \frac{\partial^2}{\partial R_{k_1} \partial R_{k_2}} \sum_n \\ \left[p_1 p_2 q_1^{k_1-1} q_2^{k_2-1} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} - \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} = \frac{\partial^2}{\partial R_{k_1} \partial R_{k_2}} \sum_n^{\mathbf{p} \times \mathbf{q}} \left[p_1 p_2 q_1^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} \left[p_1 p_2 q_1^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{p} \times \mathbf{q}} \left[p_1 p_2 q_2^{k_1+k_2-2} \right] \sum_n^{\mathbf{q} \times \mathbf{q}} \left[$$

We are interested in factorizations $\sigma_1 \circ \sigma_2 = (1, \ldots, n)$ such that

Bibliography

Valentin Féray, Maciej Dołęga, Piotr Śniady. Characters of symmetric groups in terms of free cumulants and Frobenius coordinates FPSAC 2009 (12 pages)