This presentation contains animations which require PDF browser which accepts JavaScript.

For best results use Acrobat Reader.

◆□▶ ◆舂▶ ◆逹▶ ◆逹▶ ─ 逹 ─

RSK	asymptotic	determinism	of this	and that
000	0000			

proof of the key result 00000000

Asymptotic determinism of Robinson-Schensted-Knuth algorithm joint work with Dan Romik

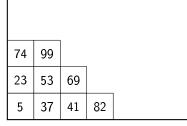
Piotr Śniady

proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Robinson-Schensted-Knuth algorithm — induction step



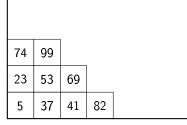
insertion tableau $P(\mathbf{x})$

proof of the key result

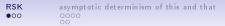
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

= 900

Robinson-Schensted-Knuth algorithm — induction step



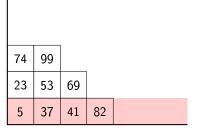
insertion tableau $P(\mathbf{x})$



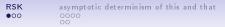
proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

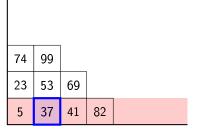


proof of the key result

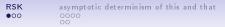
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

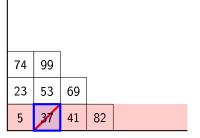


proof of the key result

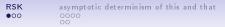
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

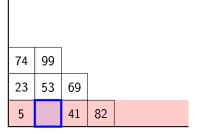


proof of the key result

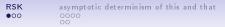
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

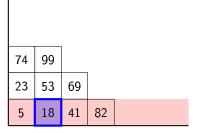


proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

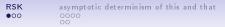
proof of the key result

- 日本 - 4 日本 - 4 日本 - 日本

Robinson-Schensted-Knuth algorithm — induction step

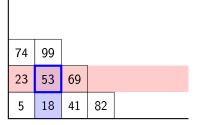
74	99			
23	53	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$



proof of the key result

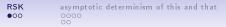
Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

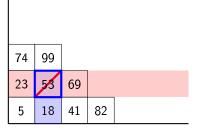


proof of the key result

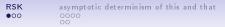
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

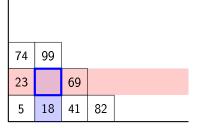


proof of the key result

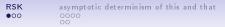
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

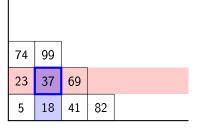


proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step

74	99			
23	37	69		_
5	18	41	82	

insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

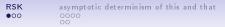
proof of the key result

- 日本 - 4 日本 - 4 日本 - 日本

Robinson-Schensted-Knuth algorithm — induction step

74	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$



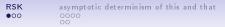
proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Robinson-Schensted-Knuth algorithm — induction step

74	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$



proof of the key result

- 日本 - 4 日本 - 4 日本 - 日本

Robinson-Schensted-Knuth algorithm — induction step

	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$

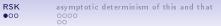
proof of the key result

- 日本 - 4 日本 - 4 日本 - 日本

Robinson-Schensted-Knuth algorithm — induction step

53	99			
23	37	69		
5	18	41	82	

insertion tableau $P(\mathbf{x})$

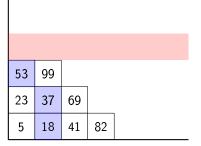


・ロト ・ 理ト ・ モト ・ モト

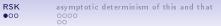
3

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

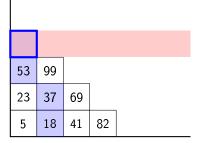


イロト イポト イヨト イヨト

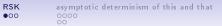
э.

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

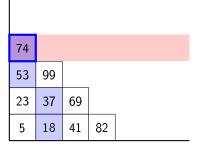


イロト イポト イヨト イヨト

3

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step



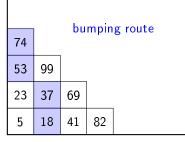
insertion tableau $P(\mathbf{x})$

イロト イポト イヨト イヨト

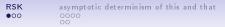
э.

proof of the key result

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

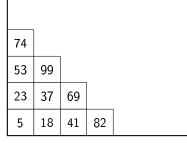


proof of the key result

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

∋ \$\\$<</p>\$\\$

Robinson-Schensted-Knuth algorithm — induction step



insertion tableau $P(\mathbf{x})$

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm

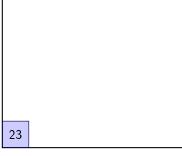
insertion tableau $P(\mathbf{x})$

 $\mathbf{x}=\emptyset$

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm



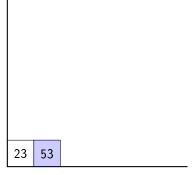
insertion tableau $P(\mathbf{x})$

x = (23)

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm



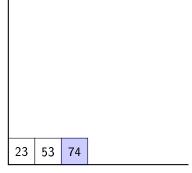
insertion tableau $P(\mathbf{x})$

x = (23, **53**)

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm



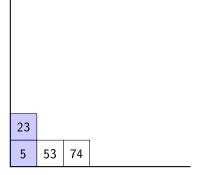
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74)$

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm



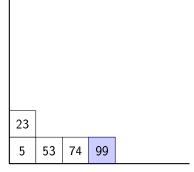
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5)$

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm



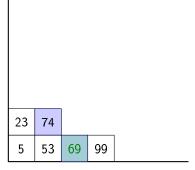
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99)$

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Robinson-Schensted-Knuth algorithm



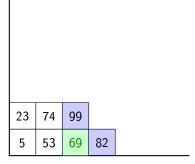
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69)$

the key result: new box 000 proof of the key result

◆□> ◆圖> ◆注> ◆注> 二注:

Robinson-Schensted-Knuth algorithm



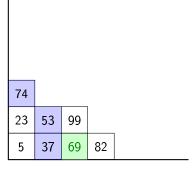
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82)$

the key result: new box 000 proof of the key result

◆□> ◆圖> ◆注> ◆注> 二注:

Robinson-Schensted-Knuth algorithm

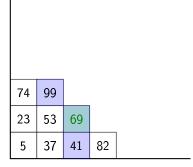


insertion tableau $P(\mathbf{x})$

the key result: new box 000 proof of the key result

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

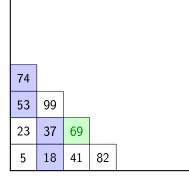
Robinson-Schensted-Knuth algorithm



insertion tableau $P(\mathbf{x})$

the key result: new box 000 proof of the key result

Robinson-Schensted-Knuth algorithm



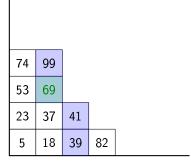
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18)$

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ - 厘 - 釣�?

the key result: new box 000 proof of the key result

Robinson-Schensted-Knuth algorithm



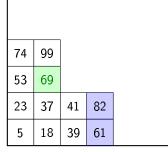
insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39)$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

the key result: new box 000 proof of the key result

Robinson-Schensted-Knuth algorithm

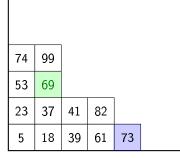


insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61)$

the key result: new box 000 proof of the key result

Robinson-Schensted-Knuth algorithm

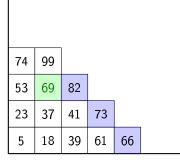


insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61, 73)$

the key result: new box 000 proof of the key result

Robinson-Schensted-Knuth algorithm

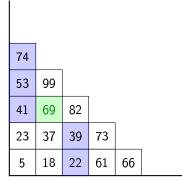


insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61, 73, 66)$

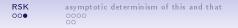
the key result: new box 000 proof of the key result

Robinson-Schensted-Knuth algorithm



insertion tableau $P(\mathbf{x})$

 $\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, 18, 39, 61, 73, 66, 22)$



the key result: new box 000 proof of the key result 00000000

outlook

- x₁, x₂,... independent random variables with uniform distribution on the interval [0, 1];
- insertion tableau $P_m = P(x_1, \ldots, x_m);$

General problem

What can we say about (the time evolution of) the insertion tableau P_m ?

"with the right scaling of time and space,

the answer is deterministic (asymptotically)"

the key result: new box 000 proof of the key result

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

diffusion of a box

• $x_n(P_m)$ denotes the location of the box containing x_n in the insertion tableau P_m , for $m \ge n$;

Concrete problem 1

Suppose that n and x_n are known; what can we say about the time evolution of $x_n(P_m)$ for m = n, n + 1, ...?

RSK	asymptotic determinism of this and that
000	0000 00

the key result: new box 000

proof of the key result

diffusion of a box

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

RSK	asymptotic determinism of this and that
000	0000 00

the key result: new box 000

proof of the key result

diffusion of a box

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ○ ○ ○ ○

the key result: new box 000 proof of the key result

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

diffusion of a box

• $x_n(P_m)$ denotes the location of the box containing x_n in insertion tableau P_m , for $m \ge n$;

Theorem

There exists an explicit function $G:\mathbb{R}_+\to\mathbb{R}_+^2$ such that

$$\frac{\boxed{x_n}(P_{\lfloor ne^{\tau} \rfloor})}{\sqrt{n \ x_n}} \xrightarrow[n \to \infty]{in \ probability} G_{\tau} \qquad for \ \tau \ge 0.$$

A asymptotic determinism of this and that
 000●
 00

the key result: new box 000 proof of the key result

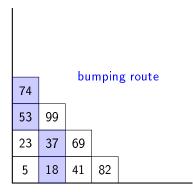
hydrodynamic limit of RSK

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへぐ

the key result: new box 000 proof of the key result

(日) (聞) (言) (言) 二言:

bumping routes

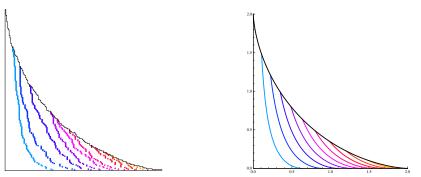


insertion tableau $P(\mathbf{x})$

$$\mathbf{x} = (23, 53, 74, 5, 99, 69, 82, 37, 41, \underbrace{18}_{x_n})$$

the key result: new box 000 proof of the key result

bumping routes



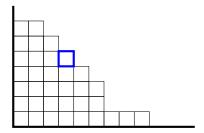
Theorem

Bumping route (scaled by factor $\frac{1}{\sqrt{n x_n}}$) obtained by adding entry x_n to the tableau P_{n-1} converges in probability (as $n \to \infty$) to a deterministic curve G_{τ} .

the key result: new box •00 proof of the key result

the key result: new box

$$P(x_1,\ldots,x_n,x_{n+1})\setminus P(x_1,\ldots,x_n)=\left\{\square\right\}$$



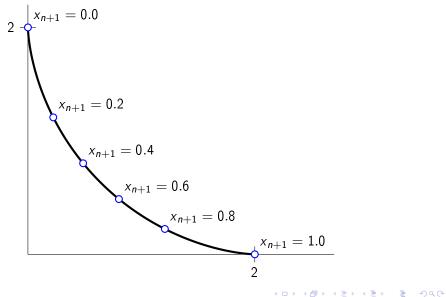
Theorem
$$\left\| \boxed{\frac{1}{\sqrt{n}} - (\mathsf{RSKcos}\,x_{n+1},\mathsf{RSKsin}\,x_{n+1})} \right\| \xrightarrow[in \ probability]{n \to \infty} 0$$

RSK	asymptotic	d et er m in ism	of	this	and	that
000	0000					

the key result: new box 000

proof of the key result

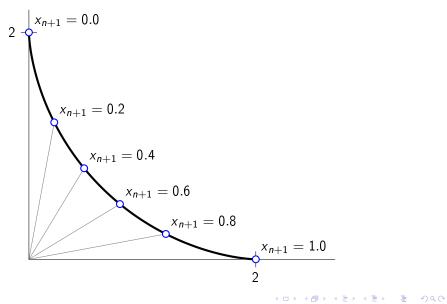
new box



RSK	asymptotic	d et er m in ism	of	this	and	that
000	0000					

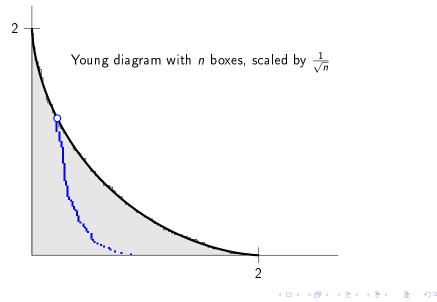
the key result: new box ○●○ proof of the key result

new box



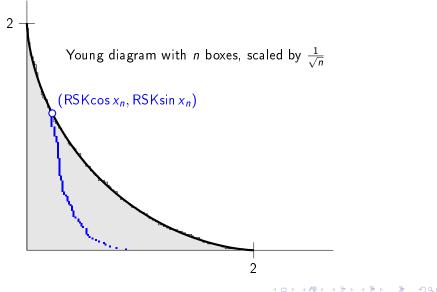
the key result: new box ○○● proof of the key result

the key result explains the behavior of bumping routes



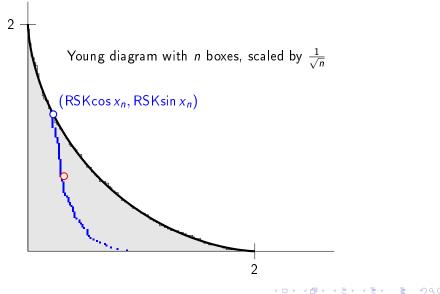
the key result: new box ○○● proof of the key result

the key result explains the behavior of bumping routes



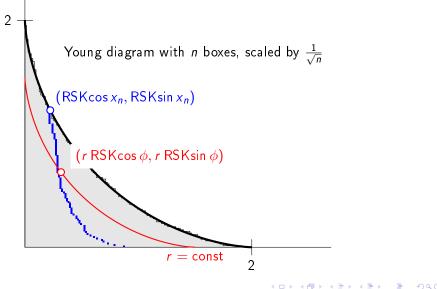
the key result: new box ○○● proof of the key result

the key result explains the behavior of bumping routes

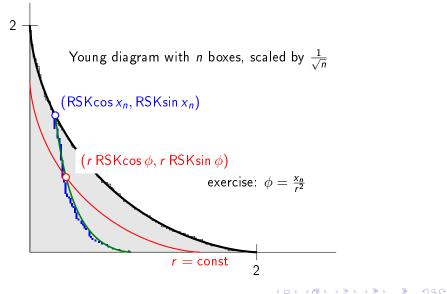


the key result: new box ○○● proof of the key result





the key result: new box ○○● proof of the key result

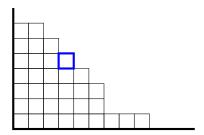


the key result: new box 000 proof of the key result •0000000

proof, part 1 — reduction of problem

instead of (for deterministic x_{n+1})

 $P(x_1,\ldots,x_n, x_{n+1}) \setminus P(x_1,\ldots,x_n) = \{ \square \}$



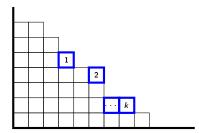
the key result: new box 000 proof of the key result

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー わえぐ

proof, part 1 — reduction of problem

we study (for random $0 < t_1 < \cdots < t_k < 1$)

$$P(x_1,\ldots,x_n, t_1,\ldots,t_k) \setminus P(x_1,\ldots,x_n) = \{ 1,\ldots,k \}$$



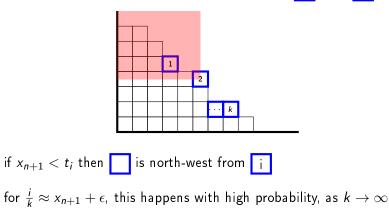
the key result: new box 000 proof of the key result

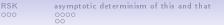
◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

proof, part 1 — reduction of problem

we study (for random $0 < t_1 < \cdots < t_k < 1$)

$$P(x_1,\ldots,x_n, t_1,\ldots,t_k) \setminus P(x_1,\ldots,x_n) = \{ 1,\ldots,k \}$$





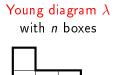
the key result: new box 000 proof of the key result

representations of the symmetric groups

representation ho of a group G is a homomorphism to matrices

 $\rho: G \to \operatorname{GL}_k$

irreducible representation ρ^{λ} of the symmetric group S_n



ション ふゆ アメリア メリア しょうくの

Littlewood-Richardson coefficients

$$\left(
ho^{\lambda}\otimes
ho^{\mu}
ight)igg({s_{|\lambda|+|\mu|}\atop {s_{|\lambda|} imes {s_{|\mu|}}}} = igoplus_{
u}c_{\lambda,\mu}^{
u}
ho^{
u}$$

the key result: new box 000 proof of the key result

RSK and Littlewood-Richardson coefficients

if $0 \leq x_1, \ldots, x_n \leq 1$ is a random sequence, such that

shape of
$$P(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1, \ldots, t_k \leq 1$ is a random sequence, such that

shape of
$$P(t_1,\ldots,t_k)=\mu$$

then the random Young diagram

shape of
$$P(x_1,\ldots,x_n,t_1,\ldots,t_k)$$

has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{\mu} \uparrow^{S_{n+k}}_{S_n \times S_{\mu}}$$

the key result: new box 000 proof of the key result

RSK and Littlewood-Richardson coefficients

if $0 \leq x_1, \ldots, x_n \leq 1$ is a random sequence, such that

shape of
$$P(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1, \ldots, t_k \leq 1$ is a random sequence, such that

shape of
$$P(t_1,\ldots,t_k)=(k)=$$

then the random Young diagram

shape of
$$P(x_1,\ldots,x_n,t_1,\ldots,t_k)$$

has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{(k)} \uparrow^{S_{n+k}}_{S_n \times S_k}$$

the key result: new box 000 proof of the key result

RSK and Littlewood-Richardson coefficients

if $0 \leq x_1, \ldots, x_n \leq 1$ is a random sequence, such that

shape of
$$P(x_1,\ldots,x_n) = \lambda$$
;

and $0 \leq t_1 < \cdots < t_k \leq 1$ is a random sequence, such that

shape of
$$P(t_1, ..., t_k) = (k) =$$

then the random Young diagram

shape of
$$P(x_1,\ldots,x_n,t_1,\ldots,t_k)$$

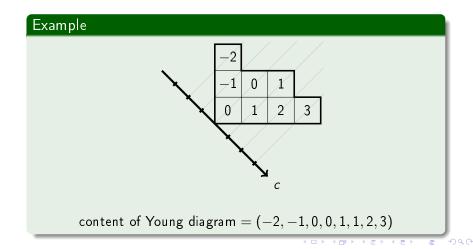
has the same distribution as random irreducible component of

$$V^{\lambda} \otimes V^{(k)} \uparrow^{S_{n+k}}_{S_n \times S_k}$$

the key result: new box 000 proof of the key result

content of the box

$$\mathsf{content}(\Box) = (x \cdot \mathsf{coordinate}) - (y \cdot \mathsf{coordinate})$$



the key result: new box 000 proof of the key result

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Jucys-Murphy elements

$$X_i = (1, i) + (2, i) + \dots + (i - 1, i)$$
 for $i \in \{1, \dots, n\}$

 X_1,\ldots,X_n are elements of the symmetric group algebra $\mathbb{C}(S_n)$

for any Young diagram λ with contents (c_1, \ldots, c_n) and a symmetric polynomial $P(x_1, \ldots, x_n)$

$$\chi^{\lambda}(P(X_1,\ldots,X_n)) = \frac{\operatorname{Tr} \rho^{\lambda}(P(X_1,\ldots,X_n))}{\operatorname{Tr} \rho^{\lambda}(1)} = ?$$

the key result: new box 000 proof of the key result

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Jucys–Murphy elements

$$X_i = (1, i) + (2, i) + \dots + (i - 1, i)$$
 for $i \in \{1, \dots, n\}$

 X_1,\ldots,X_n are elements of the symmetric group algebra $\mathbb{C}(S_n)$

for any Young diagram λ with contents (c_1, \ldots, c_n) and a symmetric polynomial $P(x_1, \ldots, x_n)$

$$\chi^{\lambda}(P(X_1,\ldots,X_n)) = \frac{\operatorname{Tr} \rho^{\lambda}(P(X_1,\ldots,X_n))}{\operatorname{Tr} \rho^{\lambda}(1)} = P(c_1,\ldots,c_n)$$

the key result: new box 000 proof of the key result

growth of Young diagrams and Jucys-Murphy elements

let $\lambda \vdash n$, $\mu \vdash k$ be fixed Young diagrams

let Γ be a random irreducible component of $V^{\lambda} \otimes V^{\mu} \uparrow_{S_n \times S_k}^{S_{n+k}}$

let c_{n+1},\ldots,c_{n+k} be the contents of boxes of $\Gamma\setminus\lambda$

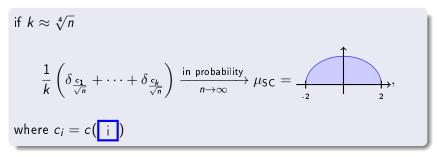
then for any symmetric polynomial $P(x_{n+1}, \ldots, x_{n+k})$ we have

$$\begin{pmatrix} \chi^{\lambda} \otimes \chi^{\mu} \end{pmatrix} \left(P(X_{n+1}, \dots, X_{n+k}) \downarrow_{S_n \times S_k}^{S_{n+k}} \right)$$

= $\mathbb{E} P(c_{n+1}, \dots, c_{n+k})$

the key result: new box 000 proof of the key result

proof, part 2



Hint: p-th moment of the left-hand-side

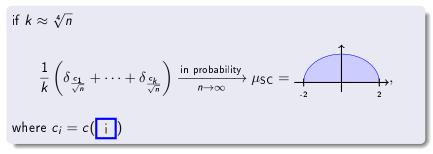
$$\frac{1}{k}\sum_{j}\left(\frac{c_{j}}{\sqrt{n}}\right)^{p}$$

is a random variable,

show that the mean converges to p-th moment of μ_{SC} show that the variance converges to zero

the key result: new box 000 proof of the key result

proof, part 2



since $c_1 < \cdots < c_k$, this implies that if $\frac{i}{k} \to x_{n+1}$ then

$$\frac{c([i])}{\sqrt{n}} \xrightarrow{\text{in probability}} F_{\mu_{\mathsf{SC}}}^{-1}(x_{n+1})$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 三臣 - のへで

the key result: new box 000 proof of the key result

proof, part 3

TTDIII

shape of P_n (scaled by factor $\frac{1}{\sqrt{n}}$) with high probability concentrates around some explicit shape LOGAN, SHEPP, VERSHIK, KEROV

 $\bigcup_{\sqrt{n}}$ is with high probability close to the boundary of this limit shape

the key result: new box

proof of the key result

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

further reading

Dan Romik, Piotr Śniady

Jeu de taquin dynamics on infinite Young tableaux and second class particles

Annals of Probability 43 (2015), no. 2, 682-737

🔋 Dan Romik, Piotr Śniady

Limit shapes of bumping routes in the Robinson-Schensted correspondence

Random Structures Algorithms 48 (2016), no. 1, 171-18