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outlook

x1, x2, . . . independent random variables
with uniform distribution on the interval [0, 1];

insertion tableau Pm = P(x1, . . . , xm);

General problem

What can we say about (the time evolution of)

the insertion tableau Pm?

�with the right scaling of time and space,

the answer is deterministic (asymptotically)�
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di�usion of a box

xn (Pm) denotes the location of the box containing xn
in the insertion tableau Pm, for m ≥ n;

Concrete problem 1

Suppose that n and xn are known;

what can we say about the time evolution of xn (Pm)

for m = n, n + 1, . . . ?
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di�usion of a box

xn (Pm) denotes the location of the box containing xn
in insertion tableau Pm, for m ≥ n;

Theorem

There exists an explicit function G : R+ → R2
+ such that

xn (Pbneτ c)
√
n xn

in probability−−−−−−−→
n→∞

Gτ for τ ≥ 0.
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hydrodynamic limit of RSK
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bumping routes
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bumping routes

0.0 0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

Theorem

Bumping route (scaled by factor 1√
n xn

)

obtained by adding entry xn to the tableau Pn−1
converges in probability (as n→∞) to a deterministic curve Gτ .
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the key result: new box

P(x1, . . . , xn, xn+1) \ P(x1, . . . , xn) =
{ }

Theorem∥∥∥∥∥√n − (RSKcos xn+1,RSKsin xn+1)

∥∥∥∥∥ n→∞−−−−−−−→
in probability

0
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new box
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the key result explains the behavior of bumping routes

2

2

Young diagram with n boxes, scaled by 1√
n

r = const

(r RSKcosφ, r RSKsinφ)

exercise: φ = xn
r2

(RSKcos xn,RSKsin xn)
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proof, part 1 � reduction of problem

instead of (for deterministic xn+1)

P(x1, . . . , xn, xn+1 ) \ P(x1, . . . , xn) =
{ }
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proof, part 1 � reduction of problem

we study (for random 0 < t1 < · · · < tk < 1)

P(x1, . . . , xn, t1, . . . , tk ) \ P(x1, . . . , xn) =
{

1 ,. . . , k
}

1

2

. . . k
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proof, part 1 � reduction of problem

we study (for random 0 < t1 < · · · < tk < 1)

P(x1, . . . , xn, t1, . . . , tk ) \ P(x1, . . . , xn) =
{

1 ,. . . , k
}

1

2

. . . k

if xn+1 < ti then is north-west from i

for i
k
≈ xn+1 + ε, this happens with high probability, as k →∞
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representations of the symmetric groups

representation ρ of a group G is a homomorphism to matrices

ρ : G → GLk

irreducible representation ρλ

of the symmetric group Sn

←→ Young diagram λ
with n boxes

Littlewood-Richardson coe�cients(
ρλ ⊗ ρµ

)xS|λ|+|µ|

S|λ|×S|µ|

=
⊕
ν

cνλ,µ ρ
ν
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RSK and Littlewood-Richardson coe�cients

if 0 ≤ x1, . . . , xn ≤ 1 is a random sequence, such that

shape of P(x1, . . . , xn) = λ;

and 0 ≤ t1, . . . , tk ≤ 1 is a random sequence, such that

shape of P(t1, . . . , tk) = µ

then the random Young diagram

shape of P(x1, . . . , xn, t1, . . . , tk)

has the same distribution as random irreducible component of

V λ ⊗ V µ
xSn+k
Sn×Sk
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content of the box

content(�) = (x-coordinate)− (y -coordinate)

Example

0 1 2 3 4

−1 0 1 2 3

−2

c

content of Young diagram = (−2,−1, 0, 0, 1, 1, 2, 3)
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Jucys�Murphy elements

Xi = (1, i) + (2, i) + · · ·+ (i − 1, i) for i ∈ {1, . . . , n}

X1, . . . ,Xn are elements of the symmetric group algebra C(Sn)

for any Young diagram λ with contents (c1, . . . , cn)
and a symmetric polynomial P(x1, . . . , xn)

χλ
(
P(X1, . . . ,Xn)

)
=

Tr ρλ
(
P(X1, . . . ,Xn)

)
Tr ρλ(1)

= ?
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Jucys�Murphy elements

Xi = (1, i) + (2, i) + · · ·+ (i − 1, i) for i ∈ {1, . . . , n}

X1, . . . ,Xn are elements of the symmetric group algebra C(Sn)

for any Young diagram λ with contents (c1, . . . , cn)
and a symmetric polynomial P(x1, . . . , xn)

χλ
(
P(X1, . . . ,Xn)

)
=

Tr ρλ
(
P(X1, . . . ,Xn)

)
Tr ρλ(1)

= P(c1, . . . , cn)
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growth of Young diagrams and Jucys-Murphy elements

c

let λ ` n, µ ` k be �xed Young diagrams

let Γ be a random irreducible component of
V λ ⊗ V µ

xSn+k
Sn×Sk

let cn+1, . . . , cn+k be the contents of boxes
of Γ \ λ

then for any symmetric polynomial
P(xn+1, . . . , xn+k) we have(

χλ ⊗ χµ
)(

P(Xn+1, . . . ,Xn+k)
ySn+k
Sn×Sk

)
= EP(cn+1, . . . , cn+k)
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proof, part 2

if k ≈ 4
√
n

1
k

(
δ c1√

n

+ · · ·+ δ c
k√
n

)
in probability−−−−−−−→

n→∞
µSC =

2-2

,

where ci = c( i )

Hint: p-th moment of the left-hand-side

1
k

∑
j

(
cj√
n

)p

is a random variable,
show that the mean converges to p-th moment of µSC
show that the variance converges to zero
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proof, part 2

if k ≈ 4
√
n

1
k

(
δ c1√

n

+ · · ·+ δ c
k√
n

)
in probability−−−−−−−→

n→∞
µSC =

2-2

,

where ci = c( i )

since c1 < · · · < ck , this implies that if i
k
→ xn+1 then

c( i )
√
n

in probability−−−−−−−→ F−1µSC
(xn+1)
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proof, part 3

shape of Pn (scaled by factor 1√
n
)

with high probability concentrates
around some explicit shape

Logan, Shepp, Vershik, Kerov

√
n
is with high probability close

to the boundary of this limit shape
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further reading

Dan Romik, Piotr �niady
Jeu de taquin dynamics on in�nite Young tableaux and
second class particles
Annals of Probability 43 (2015), no. 2, 682�737

Dan Romik, Piotr �niady
Limit shapes of bumping routes in the Robinson-Schensted
correspondence
Random Structures Algorithms 48 (2016), no. 1, 171�18
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